Properties

Label 2-387-1.1-c5-0-56
Degree $2$
Conductor $387$
Sign $-1$
Analytic cond. $62.0685$
Root an. cond. $7.87835$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.38·2-s − 2.96·4-s + 0.456·5-s + 166.·7-s + 188.·8-s − 2.46·10-s + 65.6·11-s − 689.·13-s − 897.·14-s − 920.·16-s − 737.·17-s − 609.·19-s − 1.35·20-s − 353.·22-s − 1.31e3·23-s − 3.12e3·25-s + 3.71e3·26-s − 494.·28-s + 8.96e3·29-s + 5.85e3·31-s − 1.07e3·32-s + 3.97e3·34-s + 76.0·35-s − 55.9·37-s + 3.28e3·38-s + 86.0·40-s + 1.04e4·41-s + ⋯
L(s)  = 1  − 0.952·2-s − 0.0927·4-s + 0.00816·5-s + 1.28·7-s + 1.04·8-s − 0.00778·10-s + 0.163·11-s − 1.13·13-s − 1.22·14-s − 0.898·16-s − 0.618·17-s − 0.387·19-s − 0.000757·20-s − 0.155·22-s − 0.517·23-s − 0.999·25-s + 1.07·26-s − 0.119·28-s + 1.98·29-s + 1.09·31-s − 0.184·32-s + 0.589·34-s + 0.0104·35-s − 0.00671·37-s + 0.369·38-s + 0.00850·40-s + 0.970·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 387 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 387 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(387\)    =    \(3^{2} \cdot 43\)
Sign: $-1$
Analytic conductor: \(62.0685\)
Root analytic conductor: \(7.87835\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 387,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
43 \( 1 - 1.84e3T \)
good2 \( 1 + 5.38T + 32T^{2} \)
5 \( 1 - 0.456T + 3.12e3T^{2} \)
7 \( 1 - 166.T + 1.68e4T^{2} \)
11 \( 1 - 65.6T + 1.61e5T^{2} \)
13 \( 1 + 689.T + 3.71e5T^{2} \)
17 \( 1 + 737.T + 1.41e6T^{2} \)
19 \( 1 + 609.T + 2.47e6T^{2} \)
23 \( 1 + 1.31e3T + 6.43e6T^{2} \)
29 \( 1 - 8.96e3T + 2.05e7T^{2} \)
31 \( 1 - 5.85e3T + 2.86e7T^{2} \)
37 \( 1 + 55.9T + 6.93e7T^{2} \)
41 \( 1 - 1.04e4T + 1.15e8T^{2} \)
47 \( 1 + 1.94e3T + 2.29e8T^{2} \)
53 \( 1 + 3.01e4T + 4.18e8T^{2} \)
59 \( 1 + 5.21e4T + 7.14e8T^{2} \)
61 \( 1 + 1.40e4T + 8.44e8T^{2} \)
67 \( 1 - 5.14e4T + 1.35e9T^{2} \)
71 \( 1 + 1.12e4T + 1.80e9T^{2} \)
73 \( 1 + 6.11e4T + 2.07e9T^{2} \)
79 \( 1 - 9.60e4T + 3.07e9T^{2} \)
83 \( 1 + 3.03e4T + 3.93e9T^{2} \)
89 \( 1 - 6.50e4T + 5.58e9T^{2} \)
97 \( 1 - 1.20e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.975177626208147828602750411702, −9.110118660519270731487522991846, −8.130342980155909315791606743057, −7.71457640488157044748234755802, −6.43178752514898571872612031596, −4.88868420867748512801971996448, −4.36836881655541215725590961009, −2.38565763911160218782649913177, −1.29792759077018804656899951417, 0, 1.29792759077018804656899951417, 2.38565763911160218782649913177, 4.36836881655541215725590961009, 4.88868420867748512801971996448, 6.43178752514898571872612031596, 7.71457640488157044748234755802, 8.130342980155909315791606743057, 9.110118660519270731487522991846, 9.975177626208147828602750411702

Graph of the $Z$-function along the critical line