| L(s)  = 1  |     − i·3-s     + i·5-s         − 9-s     − 4i·11-s     − 6i·13-s     + 15-s     − 6·17-s     + 4i·19-s             − 25-s     + i·27-s     + 2i·29-s     − 8·31-s     − 4·33-s         − 2i·37-s     − 6·39-s    + ⋯ | 
 
| L(s)  = 1  |     − 0.577i·3-s     + 0.447i·5-s         − 0.333·9-s     − 1.20i·11-s     − 1.66i·13-s     + 0.258·15-s     − 1.45·17-s     + 0.917i·19-s             − 0.200·25-s     + 0.192i·27-s     + 0.371i·29-s     − 1.43·31-s     − 0.696·33-s         − 0.328i·37-s     − 0.960·39-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 3 |  \( 1 + iT \)  | 
 | 5 |  \( 1 - iT \)  | 
| good | 7 |  \( 1 + 7T^{2} \)  | 
 | 11 |  \( 1 + 4iT - 11T^{2} \)  | 
 | 13 |  \( 1 + 6iT - 13T^{2} \)  | 
 | 17 |  \( 1 + 6T + 17T^{2} \)  | 
 | 19 |  \( 1 - 4iT - 19T^{2} \)  | 
 | 23 |  \( 1 + 23T^{2} \)  | 
 | 29 |  \( 1 - 2iT - 29T^{2} \)  | 
 | 31 |  \( 1 + 8T + 31T^{2} \)  | 
 | 37 |  \( 1 + 2iT - 37T^{2} \)  | 
 | 41 |  \( 1 - 6T + 41T^{2} \)  | 
 | 43 |  \( 1 - 12iT - 43T^{2} \)  | 
 | 47 |  \( 1 - 8T + 47T^{2} \)  | 
 | 53 |  \( 1 - 6iT - 53T^{2} \)  | 
 | 59 |  \( 1 - 12iT - 59T^{2} \)  | 
 | 61 |  \( 1 + 14iT - 61T^{2} \)  | 
 | 67 |  \( 1 + 4iT - 67T^{2} \)  | 
 | 71 |  \( 1 + 8T + 71T^{2} \)  | 
 | 73 |  \( 1 - 6T + 73T^{2} \)  | 
 | 79 |  \( 1 + 8T + 79T^{2} \)  | 
 | 83 |  \( 1 - 12iT - 83T^{2} \)  | 
 | 89 |  \( 1 + 10T + 89T^{2} \)  | 
 | 97 |  \( 1 - 2T + 97T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−7.912796599625954559781492977497, −7.45780800984041549694161985168, −6.42206554088495430335224426829, −5.93266186724602601673909692579, −5.25105498951903355415298803549, −4.02029321570309562791742492301, −3.17169513287499185040718865944, −2.48764007961521057354294396647, −1.22354189487460569191438815017, 0, 
1.79158125388477419855318330873, 2.42346376613088842617251768509, 3.88078615245765628348069932634, 4.41252551121001951351896294295, 4.94089114047611548370176630028, 5.93975246916964310309873161845, 6.97877706390390097886219572548, 7.18617849035328307979332807699, 8.500325317326143307596410904104