Properties

Label 4-3840e2-1.1-c1e2-0-41
Degree $4$
Conductor $14745600$
Sign $1$
Analytic cond. $940.192$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4·5-s + 3·9-s + 8·13-s − 8·15-s + 11·25-s − 4·27-s + 16·31-s − 8·37-s − 16·39-s − 12·41-s + 8·43-s + 12·45-s − 2·49-s + 24·53-s + 32·65-s + 24·67-s − 32·71-s − 22·75-s − 16·79-s + 5·81-s + 24·83-s − 20·89-s − 32·93-s − 24·107-s + 16·111-s + 24·117-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.78·5-s + 9-s + 2.21·13-s − 2.06·15-s + 11/5·25-s − 0.769·27-s + 2.87·31-s − 1.31·37-s − 2.56·39-s − 1.87·41-s + 1.21·43-s + 1.78·45-s − 2/7·49-s + 3.29·53-s + 3.96·65-s + 2.93·67-s − 3.79·71-s − 2.54·75-s − 1.80·79-s + 5/9·81-s + 2.63·83-s − 2.11·89-s − 3.31·93-s − 2.32·107-s + 1.51·111-s + 2.21·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14745600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14745600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14745600\)    =    \(2^{16} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(940.192\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14745600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.637005526\)
\(L(\frac12)\) \(\approx\) \(3.637005526\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.643341868131511253919080652131, −8.439280947041724828369778986336, −8.174774246779822126799057410626, −7.28467451916425409737504924828, −7.03867932419971488116179221426, −6.71883504358325432517094108402, −6.19659691040763031589308609790, −6.19449141239918099876392670374, −5.76603369735828493651123605100, −5.39294326186920822235473980826, −5.12563768601513364714137869726, −4.62351507821192938027965605164, −4.11529057434854098221539106148, −3.77837432412368337841722462532, −3.15912533813683896638130809239, −2.63868692538247275934287778627, −2.18095538367954224802715980440, −1.38670433189134003176200789978, −1.30946335159695553694491586273, −0.66490024439535186336475027711, 0.66490024439535186336475027711, 1.30946335159695553694491586273, 1.38670433189134003176200789978, 2.18095538367954224802715980440, 2.63868692538247275934287778627, 3.15912533813683896638130809239, 3.77837432412368337841722462532, 4.11529057434854098221539106148, 4.62351507821192938027965605164, 5.12563768601513364714137869726, 5.39294326186920822235473980826, 5.76603369735828493651123605100, 6.19449141239918099876392670374, 6.19659691040763031589308609790, 6.71883504358325432517094108402, 7.03867932419971488116179221426, 7.28467451916425409737504924828, 8.174774246779822126799057410626, 8.439280947041724828369778986336, 8.643341868131511253919080652131

Graph of the $Z$-function along the critical line