Properties

Label 2-384-24.5-c6-0-6
Degree $2$
Conductor $384$
Sign $0.163 - 0.986i$
Analytic cond. $88.3407$
Root an. cond. $9.39897$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.41 − 26.6i)3-s + 127.·5-s − 467.·7-s + (−689. − 235. i)9-s − 554.·11-s + 357. i·13-s + (561. − 3.38e3i)15-s − 4.49e3i·17-s − 3.24e3i·19-s + (−2.06e3 + 1.24e4i)21-s − 1.74e4i·23-s + 511.·25-s + (−9.31e3 + 1.73e4i)27-s + 1.74e4·29-s − 8.03e3·31-s + ⋯
L(s)  = 1  + (0.163 − 0.986i)3-s + 1.01·5-s − 1.36·7-s + (−0.946 − 0.322i)9-s − 0.416·11-s + 0.162i·13-s + (0.166 − 1.00i)15-s − 0.915i·17-s − 0.472i·19-s + (−0.223 + 1.34i)21-s − 1.43i·23-s + 0.0327·25-s + (−0.473 + 0.880i)27-s + 0.714·29-s − 0.269·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.163 - 0.986i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.163 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $0.163 - 0.986i$
Analytic conductor: \(88.3407\)
Root analytic conductor: \(9.39897\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (65, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :3),\ 0.163 - 0.986i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.4647486104\)
\(L(\frac12)\) \(\approx\) \(0.4647486104\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-4.41 + 26.6i)T \)
good5 \( 1 - 127.T + 1.56e4T^{2} \)
7 \( 1 + 467.T + 1.17e5T^{2} \)
11 \( 1 + 554.T + 1.77e6T^{2} \)
13 \( 1 - 357. iT - 4.82e6T^{2} \)
17 \( 1 + 4.49e3iT - 2.41e7T^{2} \)
19 \( 1 + 3.24e3iT - 4.70e7T^{2} \)
23 \( 1 + 1.74e4iT - 1.48e8T^{2} \)
29 \( 1 - 1.74e4T + 5.94e8T^{2} \)
31 \( 1 + 8.03e3T + 8.87e8T^{2} \)
37 \( 1 - 7.94e4iT - 2.56e9T^{2} \)
41 \( 1 - 6.18e4iT - 4.75e9T^{2} \)
43 \( 1 - 4.54e4iT - 6.32e9T^{2} \)
47 \( 1 - 1.59e5iT - 1.07e10T^{2} \)
53 \( 1 - 1.90e5T + 2.21e10T^{2} \)
59 \( 1 + 3.06e5T + 4.21e10T^{2} \)
61 \( 1 + 2.51e5iT - 5.15e10T^{2} \)
67 \( 1 - 2.02e5iT - 9.04e10T^{2} \)
71 \( 1 + 3.62e5iT - 1.28e11T^{2} \)
73 \( 1 + 3.49e5T + 1.51e11T^{2} \)
79 \( 1 + 7.18e5T + 2.43e11T^{2} \)
83 \( 1 - 1.38e5T + 3.26e11T^{2} \)
89 \( 1 - 1.22e6iT - 4.96e11T^{2} \)
97 \( 1 - 1.15e6T + 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35742705139337032237107474498, −9.566661225735811907963948174480, −8.804310341703265590968741145015, −7.61960863841668704629011829491, −6.48160776913147375967394735883, −6.23078916512724441590511642418, −4.87653734445411943330537670200, −3.03389736316164954936714612712, −2.45679572846379824932870091492, −1.04312006997351556909285542518, 0.10437270713263148148757655563, 1.98634057355883693160535028966, 3.14910692376095903566513908645, 3.99973174634618858058168892198, 5.58779170424919875797179648928, 5.88769620691662166563839883833, 7.25856952422432638278549070936, 8.634964572799056154988899656283, 9.391148862553978501918757621971, 10.15397640563834200290238781932

Graph of the $Z$-function along the critical line