Properties

Label 2-384-12.11-c5-0-58
Degree $2$
Conductor $384$
Sign $0.990 - 0.138i$
Analytic cond. $61.5873$
Root an. cond. $7.84776$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (15.4 − 2.16i)3-s + 81.6i·5-s − 91.7i·7-s + (233. − 66.7i)9-s + 710.·11-s + 666.·13-s + (176. + 1.25e3i)15-s − 2.17e3i·17-s + 1.12e3i·19-s + (−198. − 1.41e3i)21-s − 3.12e3·23-s − 3.53e3·25-s + (3.46e3 − 1.53e3i)27-s − 371. i·29-s − 2.50e3i·31-s + ⋯
L(s)  = 1  + (0.990 − 0.138i)3-s + 1.45i·5-s − 0.707i·7-s + (0.961 − 0.274i)9-s + 1.77·11-s + 1.09·13-s + (0.202 + 1.44i)15-s − 1.82i·17-s + 0.715i·19-s + (−0.0981 − 0.700i)21-s − 1.22·23-s − 1.13·25-s + (0.914 − 0.405i)27-s − 0.0819i·29-s − 0.468i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.138i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.990 - 0.138i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $0.990 - 0.138i$
Analytic conductor: \(61.5873\)
Root analytic conductor: \(7.84776\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (383, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :5/2),\ 0.990 - 0.138i)\)

Particular Values

\(L(3)\) \(\approx\) \(3.831361640\)
\(L(\frac12)\) \(\approx\) \(3.831361640\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-15.4 + 2.16i)T \)
good5 \( 1 - 81.6iT - 3.12e3T^{2} \)
7 \( 1 + 91.7iT - 1.68e4T^{2} \)
11 \( 1 - 710.T + 1.61e5T^{2} \)
13 \( 1 - 666.T + 3.71e5T^{2} \)
17 \( 1 + 2.17e3iT - 1.41e6T^{2} \)
19 \( 1 - 1.12e3iT - 2.47e6T^{2} \)
23 \( 1 + 3.12e3T + 6.43e6T^{2} \)
29 \( 1 + 371. iT - 2.05e7T^{2} \)
31 \( 1 + 2.50e3iT - 2.86e7T^{2} \)
37 \( 1 + 6.27e3T + 6.93e7T^{2} \)
41 \( 1 + 1.54e4iT - 1.15e8T^{2} \)
43 \( 1 - 1.15e4iT - 1.47e8T^{2} \)
47 \( 1 - 2.10e4T + 2.29e8T^{2} \)
53 \( 1 - 2.36e4iT - 4.18e8T^{2} \)
59 \( 1 - 4.37e3T + 7.14e8T^{2} \)
61 \( 1 - 5.30e4T + 8.44e8T^{2} \)
67 \( 1 + 2.47e4iT - 1.35e9T^{2} \)
71 \( 1 + 2.70e4T + 1.80e9T^{2} \)
73 \( 1 - 1.55e4T + 2.07e9T^{2} \)
79 \( 1 - 4.27e4iT - 3.07e9T^{2} \)
83 \( 1 + 2.90e4T + 3.93e9T^{2} \)
89 \( 1 + 1.87e4iT - 5.58e9T^{2} \)
97 \( 1 + 1.46e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42815144708941952846189190407, −9.632818384342173044552618895708, −8.759657587155892506926909040109, −7.51954963559599077403052670359, −6.95718226006445614901652089870, −6.12298131875863391970899439747, −4.02628839931834421016333071214, −3.57803922984512494419643752703, −2.35016859724235641813676767870, −1.04819452899975484955622706373, 1.15974720899120501801446705749, 1.89621122359005009797287002025, 3.71109022810229607428076211847, 4.26100206869800558609768537096, 5.64839588306101753943361133596, 6.66798499064899894846392216693, 8.270426515705430160666695879492, 8.673950754848488558330582189193, 9.184011897419329811945743629994, 10.24837272866055470062635182314

Graph of the $Z$-function along the critical line