Properties

Degree $2$
Conductor $384$
Sign $0.711 + 0.702i$
Motivic weight $2$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.22 + 1.22i)3-s + (4.78 − 4.78i)5-s + 10.3·7-s − 2.99i·9-s + (−0.526 − 0.526i)11-s + (−17.2 − 17.2i)13-s + 11.7i·15-s + 4.71·17-s + (−2.53 + 2.53i)19-s + (−12.6 + 12.6i)21-s + 12.5·23-s − 20.8i·25-s + (3.67 + 3.67i)27-s + (2.19 + 2.19i)29-s − 28.0i·31-s + ⋯
L(s)  = 1  + (−0.408 + 0.408i)3-s + (0.957 − 0.957i)5-s + 1.47·7-s − 0.333i·9-s + (−0.0478 − 0.0478i)11-s + (−1.32 − 1.32i)13-s + 0.781i·15-s + 0.277·17-s + (−0.133 + 0.133i)19-s + (−0.602 + 0.602i)21-s + 0.547·23-s − 0.834i·25-s + (0.136 + 0.136i)27-s + (0.0757 + 0.0757i)29-s − 0.904i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $0.711 + 0.702i$
Motivic weight: \(2\)
Character: $\chi_{384} (223, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :1),\ 0.711 + 0.702i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.75134 - 0.718553i\)
\(L(\frac12)\) \(\approx\) \(1.75134 - 0.718553i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.22 - 1.22i)T \)
good5 \( 1 + (-4.78 + 4.78i)T - 25iT^{2} \)
7 \( 1 - 10.3T + 49T^{2} \)
11 \( 1 + (0.526 + 0.526i)T + 121iT^{2} \)
13 \( 1 + (17.2 + 17.2i)T + 169iT^{2} \)
17 \( 1 - 4.71T + 289T^{2} \)
19 \( 1 + (2.53 - 2.53i)T - 361iT^{2} \)
23 \( 1 - 12.5T + 529T^{2} \)
29 \( 1 + (-2.19 - 2.19i)T + 841iT^{2} \)
31 \( 1 + 28.0iT - 961T^{2} \)
37 \( 1 + (-32.1 + 32.1i)T - 1.36e3iT^{2} \)
41 \( 1 + 23.1iT - 1.68e3T^{2} \)
43 \( 1 + (-4.79 - 4.79i)T + 1.84e3iT^{2} \)
47 \( 1 - 39.0iT - 2.20e3T^{2} \)
53 \( 1 + (-27.9 + 27.9i)T - 2.80e3iT^{2} \)
59 \( 1 + (-79.8 - 79.8i)T + 3.48e3iT^{2} \)
61 \( 1 + (-36.7 - 36.7i)T + 3.72e3iT^{2} \)
67 \( 1 + (10.9 - 10.9i)T - 4.48e3iT^{2} \)
71 \( 1 + 52.6T + 5.04e3T^{2} \)
73 \( 1 + 67.8iT - 5.32e3T^{2} \)
79 \( 1 + 56.4iT - 6.24e3T^{2} \)
83 \( 1 + (58.3 - 58.3i)T - 6.88e3iT^{2} \)
89 \( 1 - 131. iT - 7.92e3T^{2} \)
97 \( 1 - 60.9T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92202827475149226421636240202, −10.10269142679207415663140073604, −9.283545826999787489907312990237, −8.280555111688005664737996930294, −7.41548773813481667493886685237, −5.67616943562134216860110742815, −5.26829297970063459681668549520, −4.37695818381351390424671897603, −2.40064141500613222921646571536, −0.957213320792042192516965256986, 1.63737948639937677258471020740, 2.55950367752952414732929801800, 4.56092331056000998383530042406, 5.39950903984785943824105810100, 6.64184701783223683026957631331, 7.24007018327087744400045765427, 8.366873111894113797544006263366, 9.592692769334985632438840147712, 10.39974770255578911816428128223, 11.34435686700957867809377599622

Graph of the $Z$-function along the critical line