L(s) = 1 | + (−2.69 − 1.32i)3-s − 0.640i·5-s + 2.72·7-s + (5.47 + 7.14i)9-s − 11.2i·11-s + 5.25·13-s + (−0.849 + 1.72i)15-s + 14.8i·17-s − 15.0·19-s + (−7.31 − 3.61i)21-s − 36.4i·23-s + 24.5·25-s + (−5.24 − 26.4i)27-s − 51.7i·29-s − 36.5·31-s + ⋯ |
L(s) = 1 | + (−0.896 − 0.442i)3-s − 0.128i·5-s + 0.388·7-s + (0.608 + 0.793i)9-s − 1.02i·11-s + 0.403·13-s + (−0.0566 + 0.114i)15-s + 0.874i·17-s − 0.793·19-s + (−0.348 − 0.171i)21-s − 1.58i·23-s + 0.983·25-s + (−0.194 − 0.980i)27-s − 1.78i·29-s − 1.17·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.442 + 0.896i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.442 + 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.499103 - 0.802834i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.499103 - 0.802834i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.69 + 1.32i)T \) |
good | 5 | \( 1 + 0.640iT - 25T^{2} \) |
| 7 | \( 1 - 2.72T + 49T^{2} \) |
| 11 | \( 1 + 11.2iT - 121T^{2} \) |
| 13 | \( 1 - 5.25T + 169T^{2} \) |
| 17 | \( 1 - 14.8iT - 289T^{2} \) |
| 19 | \( 1 + 15.0T + 361T^{2} \) |
| 23 | \( 1 + 36.4iT - 529T^{2} \) |
| 29 | \( 1 + 51.7iT - 841T^{2} \) |
| 31 | \( 1 + 36.5T + 961T^{2} \) |
| 37 | \( 1 + 63.6T + 1.36e3T^{2} \) |
| 41 | \( 1 + 12.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 11.8T + 1.84e3T^{2} \) |
| 47 | \( 1 + 61.1iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 59.1iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 37.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 58.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + 23.0T + 4.48e3T^{2} \) |
| 71 | \( 1 + 7.29iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 73.4T + 5.32e3T^{2} \) |
| 79 | \( 1 - 58.5T + 6.24e3T^{2} \) |
| 83 | \( 1 - 32.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 112. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 80.0T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84539149085857233823594377404, −10.32775104834531315627073163006, −8.711561218698125489855632845947, −8.145804381926795255483915880162, −6.80517383674973153906727399690, −6.07058857343525231746846708977, −5.08081236295656852466333229404, −3.88581979304772611454258210631, −2.03134800341827567272880778125, −0.48676195618193759346894659144,
1.53439496503711853205364865628, 3.45917682087197897100506223708, 4.72481414625756167809110123867, 5.41740163988124002706256217648, 6.72791455764163660877218915986, 7.40983558433932054798411590595, 8.898853412798002992134083899447, 9.662749180374282618687375302426, 10.73094436070459936891783259488, 11.20215321420023982332472436814