Properties

Degree $8$
Conductor $21743271936$
Sign $1$
Motivic weight $1$
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·9-s + 12·11-s − 8·23-s + 8·25-s − 6·27-s − 24·33-s − 16·37-s − 32·47-s + 16·49-s + 4·59-s + 16·61-s + 16·69-s − 8·71-s − 8·73-s − 16·75-s + 11·81-s + 20·83-s − 16·97-s + 24·99-s − 12·107-s − 16·109-s + 32·111-s + 56·121-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.15·3-s + 2/3·9-s + 3.61·11-s − 1.66·23-s + 8/5·25-s − 1.15·27-s − 4.17·33-s − 2.63·37-s − 4.66·47-s + 16/7·49-s + 0.520·59-s + 2.04·61-s + 1.92·69-s − 0.949·71-s − 0.936·73-s − 1.84·75-s + 11/9·81-s + 2.19·83-s − 1.62·97-s + 2.41·99-s − 1.16·107-s − 1.53·109-s + 3.03·111-s + 5.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{4}\)
Sign: $1$
Motivic weight: \(1\)
Character: induced by $\chi_{384} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.36805\)
\(L(\frac12)\) \(\approx\) \(1.36805\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
good5$D_4\times C_2$ \( 1 - 8 T^{2} + 46 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 - 16 T^{2} + 142 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
11$C_4$ \( ( 1 - 6 T + 26 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 20 T^{2} + 358 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 - 48 T^{2} + 1118 T^{4} - 48 p^{2} T^{6} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 - 8 T^{2} + 718 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 96 T^{2} + 4046 T^{4} - 96 p^{2} T^{6} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 116 T^{2} + 6406 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 112 T^{2} + 6334 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
53$D_4\times C_2$ \( 1 - 200 T^{2} + 15598 T^{4} - 200 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 - 2 T + 114 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 8 T + 118 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 160 T^{2} + 13758 T^{4} - 160 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 4 T - 34 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
79$D_4\times C_2$ \( 1 - 128 T^{2} + 7758 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 10 T + 186 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 162 T^{2} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 8 T + 190 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.160166407138318214300651917701, −8.036084077565844897833599344961, −7.85984494523370398543395636615, −7.18525770703991326931854786251, −7.11598315438957270778129682342, −6.79698648521432253349227155231, −6.61433965144405487198754339378, −6.55095056031657267483702077158, −6.40602062376300254341970292162, −5.93826331989077339506237106707, −5.70087326337340059556178010635, −5.38207263894208148420383547763, −5.11666821562140884642663997519, −4.98790155860994296026882195668, −4.38230861728745604736417430792, −4.26104731231808745258099638198, −3.86457554916008562357222693846, −3.74678272242361289903181249756, −3.52229369124652651480767571762, −3.03819750642008649545686305237, −2.52866925710650984195584796654, −1.83548621488853150549222289154, −1.51012220631758179412520442508, −1.45472451603873987349616811025, −0.52833814300405234554427011740, 0.52833814300405234554427011740, 1.45472451603873987349616811025, 1.51012220631758179412520442508, 1.83548621488853150549222289154, 2.52866925710650984195584796654, 3.03819750642008649545686305237, 3.52229369124652651480767571762, 3.74678272242361289903181249756, 3.86457554916008562357222693846, 4.26104731231808745258099638198, 4.38230861728745604736417430792, 4.98790155860994296026882195668, 5.11666821562140884642663997519, 5.38207263894208148420383547763, 5.70087326337340059556178010635, 5.93826331989077339506237106707, 6.40602062376300254341970292162, 6.55095056031657267483702077158, 6.61433965144405487198754339378, 6.79698648521432253349227155231, 7.11598315438957270778129682342, 7.18525770703991326931854786251, 7.85984494523370398543395636615, 8.036084077565844897833599344961, 8.160166407138318214300651917701

Graph of the $Z$-function along the critical line