Properties

Label 2-3800-5.4-c1-0-55
Degree $2$
Conductor $3800$
Sign $0.447 + 0.894i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.08i·3-s + 4.19i·7-s + 1.81·9-s − 6.43·11-s − 2.24i·13-s − 7.84i·17-s + 19-s − 4.57·21-s + 0.859i·23-s + 5.24i·27-s − 8.38·29-s + 1.24·31-s − 7.00i·33-s − 6.79i·37-s + 2.44·39-s + ⋯
L(s)  = 1  + 0.629i·3-s + 1.58i·7-s + 0.603·9-s − 1.93·11-s − 0.622i·13-s − 1.90i·17-s + 0.229·19-s − 0.998·21-s + 0.179i·23-s + 1.00i·27-s − 1.55·29-s + 0.223·31-s − 1.22i·33-s − 1.11i·37-s + 0.392·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8435989445\)
\(L(\frac12)\) \(\approx\) \(0.8435989445\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 1.08iT - 3T^{2} \)
7 \( 1 - 4.19iT - 7T^{2} \)
11 \( 1 + 6.43T + 11T^{2} \)
13 \( 1 + 2.24iT - 13T^{2} \)
17 \( 1 + 7.84iT - 17T^{2} \)
23 \( 1 - 0.859iT - 23T^{2} \)
29 \( 1 + 8.38T + 29T^{2} \)
31 \( 1 - 1.24T + 31T^{2} \)
37 \( 1 + 6.79iT - 37T^{2} \)
41 \( 1 - 5.92T + 41T^{2} \)
43 \( 1 + 6.81iT - 43T^{2} \)
47 \( 1 + 6.00iT - 47T^{2} \)
53 \( 1 + 13.7iT - 53T^{2} \)
59 \( 1 + 6.88T + 59T^{2} \)
61 \( 1 + 1.31T + 61T^{2} \)
67 \( 1 - 4.73iT - 67T^{2} \)
71 \( 1 - 10.2T + 71T^{2} \)
73 \( 1 - 9.86iT - 73T^{2} \)
79 \( 1 + 6.47T + 79T^{2} \)
83 \( 1 + 5.42iT - 83T^{2} \)
89 \( 1 + 3.10T + 89T^{2} \)
97 \( 1 - 6.76iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.440773988081311533852614542088, −7.61120094381915172573762693235, −7.11616633629678418549954499275, −5.72345979791264051846318417021, −5.31948530712804123793568269655, −4.90192732373527555253126150981, −3.61474622168205322688214387459, −2.72423245908821145299813662791, −2.15782546972017060082210229081, −0.25451196312797026086849428210, 1.13019732281063635205870847342, 1.96328829706844614518156834605, 3.14693550359409801359083086715, 4.16752954955245966370696289108, 4.63150280078013734244886882671, 5.82972962624004847675359989668, 6.48800140691425511602149395286, 7.40769020051182964817194203170, 7.71328218689209946290811324007, 8.256046717671039017176452852842

Graph of the $Z$-function along the critical line