Properties

Label 2-3800-5.4-c1-0-31
Degree $2$
Conductor $3800$
Sign $0.447 + 0.894i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.26i·3-s + 4.07i·7-s − 7.63·9-s − 0.786·11-s − 1.07i·13-s − 1.90i·17-s + 19-s + 13.2·21-s + 1.41i·23-s + 15.1i·27-s + 7.26·29-s + 2.22·31-s + 2.56i·33-s + 9.14i·37-s − 3.52·39-s + ⋯
L(s)  = 1  − 1.88i·3-s + 1.53i·7-s − 2.54·9-s − 0.237·11-s − 0.299i·13-s − 0.462i·17-s + 0.229·19-s + 2.89·21-s + 0.294i·23-s + 2.91i·27-s + 1.34·29-s + 0.398·31-s + 0.446i·33-s + 1.50i·37-s − 0.563·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.614798331\)
\(L(\frac12)\) \(\approx\) \(1.614798331\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 3.26iT - 3T^{2} \)
7 \( 1 - 4.07iT - 7T^{2} \)
11 \( 1 + 0.786T + 11T^{2} \)
13 \( 1 + 1.07iT - 13T^{2} \)
17 \( 1 + 1.90iT - 17T^{2} \)
23 \( 1 - 1.41iT - 23T^{2} \)
29 \( 1 - 7.26T + 29T^{2} \)
31 \( 1 - 2.22T + 31T^{2} \)
37 \( 1 - 9.14iT - 37T^{2} \)
41 \( 1 + 6.11T + 41T^{2} \)
43 \( 1 + 8.40iT - 43T^{2} \)
47 \( 1 - 3.56iT - 47T^{2} \)
53 \( 1 - 8.57iT - 53T^{2} \)
59 \( 1 - 13.4T + 59T^{2} \)
61 \( 1 - 12.7T + 61T^{2} \)
67 \( 1 + 5.10iT - 67T^{2} \)
71 \( 1 - 1.65T + 71T^{2} \)
73 \( 1 + 10.3iT - 73T^{2} \)
79 \( 1 - 16.2T + 79T^{2} \)
83 \( 1 + 9.35iT - 83T^{2} \)
89 \( 1 + 3.10T + 89T^{2} \)
97 \( 1 - 4.55iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.361759919392963175043582249616, −7.66816361116193800189019729365, −6.81445518026852489047108099304, −6.30910268864707600655478187169, −5.53900090328143575505763718783, −4.98815138538707433035922635445, −3.20657337551944418323733181437, −2.59487011260660598725566595155, −1.87405592802922206409215527093, −0.75438808821020124960839066301, 0.70353902084649560985104790644, 2.47885135773356227832678197441, 3.60768873913419266351160313048, 3.94063397802300854655965455235, 4.73176473210378900860893916074, 5.30792515859795178943891170717, 6.35529882300263165872874034910, 7.11695215715282357068528735790, 8.211160672116515926979060140759, 8.601373850428433226164719954342

Graph of the $Z$-function along the critical line