Properties

Label 4-3800e2-1.1-c1e2-0-8
Degree $4$
Conductor $14440000$
Sign $1$
Analytic cond. $920.706$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·9-s + 4·11-s − 2·19-s + 6·29-s + 8·31-s − 16·41-s + 5·49-s − 2·59-s + 28·61-s + 20·71-s + 20·79-s + 16·81-s + 24·89-s + 20·99-s − 28·101-s − 14·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 25·169-s + ⋯
L(s)  = 1  + 5/3·9-s + 1.20·11-s − 0.458·19-s + 1.11·29-s + 1.43·31-s − 2.49·41-s + 5/7·49-s − 0.260·59-s + 3.58·61-s + 2.37·71-s + 2.25·79-s + 16/9·81-s + 2.54·89-s + 2.01·99-s − 2.78·101-s − 1.34·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.92·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14440000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14440000\)    =    \(2^{6} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(920.706\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14440000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.542076120\)
\(L(\frac12)\) \(\approx\) \(4.542076120\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19$C_1$ \( ( 1 + T )^{2} \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.528025274072942944335659489349, −8.380519276914765202130062799307, −7.87812407280192587973044173695, −7.77434848980775936382310046910, −6.88750124009191480934460013894, −6.72798501579055834463631913508, −6.59521731372866378725017474374, −6.53625648618392145621412596375, −5.48266750040847014794515410383, −5.39679155135859262068134042788, −4.82924182779664761793597756632, −4.44301408788742981283387886075, −4.09453531427954223741771908931, −3.74311036894514553072594356463, −3.36063433232076111183966528523, −2.72860112158830787645053082073, −1.94866917095304004562577190739, −1.92830454358131128596931199848, −0.943079307186390359816593907397, −0.824261714270010477597282677940, 0.824261714270010477597282677940, 0.943079307186390359816593907397, 1.92830454358131128596931199848, 1.94866917095304004562577190739, 2.72860112158830787645053082073, 3.36063433232076111183966528523, 3.74311036894514553072594356463, 4.09453531427954223741771908931, 4.44301408788742981283387886075, 4.82924182779664761793597756632, 5.39679155135859262068134042788, 5.48266750040847014794515410383, 6.53625648618392145621412596375, 6.59521731372866378725017474374, 6.72798501579055834463631913508, 6.88750124009191480934460013894, 7.77434848980775936382310046910, 7.87812407280192587973044173695, 8.380519276914765202130062799307, 8.528025274072942944335659489349

Graph of the $Z$-function along the critical line