L(s) = 1 | − 4·3-s + 2·5-s − 4·7-s + 8·9-s − 4·11-s − 4·13-s − 8·15-s − 4·17-s − 2·19-s + 16·21-s − 12·23-s + 3·25-s − 12·27-s + 4·29-s − 8·31-s + 16·33-s − 8·35-s − 12·37-s + 16·39-s − 4·41-s + 4·43-s + 16·45-s − 4·47-s + 6·49-s + 16·51-s + 4·53-s − 8·55-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 0.894·5-s − 1.51·7-s + 8/3·9-s − 1.20·11-s − 1.10·13-s − 2.06·15-s − 0.970·17-s − 0.458·19-s + 3.49·21-s − 2.50·23-s + 3/5·25-s − 2.30·27-s + 0.742·29-s − 1.43·31-s + 2.78·33-s − 1.35·35-s − 1.97·37-s + 2.56·39-s − 0.624·41-s + 0.609·43-s + 2.38·45-s − 0.583·47-s + 6/7·49-s + 2.24·51-s + 0.549·53-s − 1.07·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94256066319059589801682795120, −10.68548639853506772334618426967, −10.16623922017043054936950871610, −10.13051823443032030003347563002, −9.537240522241727969188861774921, −9.087019736397755837878264379104, −8.306331735166356284250669934194, −7.69325377850132072651736083877, −6.99267862041749681055782655233, −6.61046132542093407854307811113, −6.32492184653728948339791911819, −5.78573202136722975021606241343, −5.26924804531103241711560797133, −5.17790341794470007537249143915, −4.27638772863881814162798045888, −3.60239909983863243422565985455, −2.51380771504828713069998884601, −1.95569357302930458987582739256, 0, 0,
1.95569357302930458987582739256, 2.51380771504828713069998884601, 3.60239909983863243422565985455, 4.27638772863881814162798045888, 5.17790341794470007537249143915, 5.26924804531103241711560797133, 5.78573202136722975021606241343, 6.32492184653728948339791911819, 6.61046132542093407854307811113, 6.99267862041749681055782655233, 7.69325377850132072651736083877, 8.306331735166356284250669934194, 9.087019736397755837878264379104, 9.537240522241727969188861774921, 10.13051823443032030003347563002, 10.16623922017043054936950871610, 10.68548639853506772334618426967, 10.94256066319059589801682795120