Properties

Label 2-38-19.7-c7-0-6
Degree $2$
Conductor $38$
Sign $0.999 + 0.00917i$
Analytic cond. $11.8706$
Root an. cond. $3.44537$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4 + 6.92i)2-s + (−24.5 − 42.4i)3-s + (−31.9 + 55.4i)4-s + (81.5 + 141. i)5-s + (196. − 339. i)6-s − 230.·7-s − 511.·8-s + (−109. + 189. i)9-s + (−652. + 1.12e3i)10-s + 7.72e3·11-s + 3.13e3·12-s + (6.13e3 − 1.06e4i)13-s + (−922. − 1.59e3i)14-s + (3.99e3 − 6.92e3i)15-s + (−2.04e3 − 3.54e3i)16-s + (9.68e3 + 1.67e4i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.524 − 0.908i)3-s + (−0.249 + 0.433i)4-s + (0.291 + 0.505i)5-s + (0.370 − 0.642i)6-s − 0.254·7-s − 0.353·8-s + (−0.0499 + 0.0864i)9-s + (−0.206 + 0.357i)10-s + 1.75·11-s + 0.524·12-s + (0.774 − 1.34i)13-s + (−0.0898 − 0.155i)14-s + (0.305 − 0.529i)15-s + (−0.125 − 0.216i)16-s + (0.478 + 0.828i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00917i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.999 + 0.00917i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $0.999 + 0.00917i$
Analytic conductor: \(11.8706\)
Root analytic conductor: \(3.44537\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :7/2),\ 0.999 + 0.00917i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.98262 - 0.00909449i\)
\(L(\frac12)\) \(\approx\) \(1.98262 - 0.00909449i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4 - 6.92i)T \)
19 \( 1 + (-2.92e4 + 6.04e3i)T \)
good3 \( 1 + (24.5 + 42.4i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 + (-81.5 - 141. i)T + (-3.90e4 + 6.76e4i)T^{2} \)
7 \( 1 + 230.T + 8.23e5T^{2} \)
11 \( 1 - 7.72e3T + 1.94e7T^{2} \)
13 \( 1 + (-6.13e3 + 1.06e4i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 + (-9.68e3 - 1.67e4i)T + (-2.05e8 + 3.55e8i)T^{2} \)
23 \( 1 + (3.52e4 - 6.09e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (-6.10e4 + 1.05e5i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 - 2.67e4T + 2.75e10T^{2} \)
37 \( 1 - 2.39e5T + 9.49e10T^{2} \)
41 \( 1 + (8.69e3 + 1.50e4i)T + (-9.73e10 + 1.68e11i)T^{2} \)
43 \( 1 + (1.49e5 + 2.59e5i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + (4.40e5 - 7.62e5i)T + (-2.53e11 - 4.38e11i)T^{2} \)
53 \( 1 + (1.40e5 - 2.43e5i)T + (-5.87e11 - 1.01e12i)T^{2} \)
59 \( 1 + (1.60e5 + 2.77e5i)T + (-1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (-1.38e6 + 2.39e6i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (7.36e5 - 1.27e6i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (-1.23e6 - 2.13e6i)T + (-4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 + (-2.05e6 - 3.55e6i)T + (-5.52e12 + 9.56e12i)T^{2} \)
79 \( 1 + (2.59e6 + 4.48e6i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 - 7.24e6T + 2.71e13T^{2} \)
89 \( 1 + (-2.52e6 + 4.37e6i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + (-1.60e6 - 2.78e6i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.67104163579683470122017065439, −13.59817189813410209473547526145, −12.51496733029084075126463943655, −11.48346036233292463975032892472, −9.714571754075711349719868459609, −7.955154024581166886404658505168, −6.58161184197545910433370229212, −5.90235246946298349446841805741, −3.57327190302978587379892849356, −1.09414621904567048106726702246, 1.32399168913822680483637590012, 3.78054407288141869424675129659, 4.92318869741914469228910768559, 6.45971809447087384517453306890, 9.058914953551515953281419631928, 9.814622839239442574237178752082, 11.28277476922927273264788497469, 12.05371790752750518789528178717, 13.63383052416262376193893132118, 14.57958760305462575610443354989

Graph of the $Z$-function along the critical line