Properties

Label 2-38-1.1-c7-0-7
Degree $2$
Conductor $38$
Sign $1$
Analytic cond. $11.8706$
Root an. cond. $3.44537$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 51.0·3-s + 64·4-s + 338.·5-s + 408.·6-s − 143.·7-s + 512·8-s + 420.·9-s + 2.70e3·10-s − 2.23e3·11-s + 3.26e3·12-s + 3.81e3·13-s − 1.14e3·14-s + 1.72e4·15-s + 4.09e3·16-s − 1.99e4·17-s + 3.36e3·18-s + 6.85e3·19-s + 2.16e4·20-s − 7.33e3·21-s − 1.79e4·22-s + 9.77e4·23-s + 2.61e4·24-s + 3.64e4·25-s + 3.05e4·26-s − 9.01e4·27-s − 9.19e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.09·3-s + 0.5·4-s + 1.21·5-s + 0.772·6-s − 0.158·7-s + 0.353·8-s + 0.192·9-s + 0.856·10-s − 0.507·11-s + 0.546·12-s + 0.481·13-s − 0.111·14-s + 1.32·15-s + 0.250·16-s − 0.982·17-s + 0.136·18-s + 0.229·19-s + 0.605·20-s − 0.172·21-s − 0.358·22-s + 1.67·23-s + 0.386·24-s + 0.466·25-s + 0.340·26-s − 0.881·27-s − 0.0791·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $1$
Analytic conductor: \(11.8706\)
Root analytic conductor: \(3.44537\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(4.188024012\)
\(L(\frac12)\) \(\approx\) \(4.188024012\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
19 \( 1 - 6.85e3T \)
good3 \( 1 - 51.0T + 2.18e3T^{2} \)
5 \( 1 - 338.T + 7.81e4T^{2} \)
7 \( 1 + 143.T + 8.23e5T^{2} \)
11 \( 1 + 2.23e3T + 1.94e7T^{2} \)
13 \( 1 - 3.81e3T + 6.27e7T^{2} \)
17 \( 1 + 1.99e4T + 4.10e8T^{2} \)
23 \( 1 - 9.77e4T + 3.40e9T^{2} \)
29 \( 1 - 3.59e4T + 1.72e10T^{2} \)
31 \( 1 + 1.35e5T + 2.75e10T^{2} \)
37 \( 1 + 1.12e5T + 9.49e10T^{2} \)
41 \( 1 + 3.34e5T + 1.94e11T^{2} \)
43 \( 1 + 7.89e5T + 2.71e11T^{2} \)
47 \( 1 + 3.45e5T + 5.06e11T^{2} \)
53 \( 1 + 2.82e5T + 1.17e12T^{2} \)
59 \( 1 - 1.08e6T + 2.48e12T^{2} \)
61 \( 1 - 1.60e6T + 3.14e12T^{2} \)
67 \( 1 - 8.25e5T + 6.06e12T^{2} \)
71 \( 1 - 1.45e6T + 9.09e12T^{2} \)
73 \( 1 - 6.35e6T + 1.10e13T^{2} \)
79 \( 1 + 3.41e6T + 1.92e13T^{2} \)
83 \( 1 - 2.76e6T + 2.71e13T^{2} \)
89 \( 1 + 1.95e6T + 4.42e13T^{2} \)
97 \( 1 + 1.49e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.54680831832613543774524174107, −13.52331762803954829289086070196, −13.05248536667493958351745187368, −11.10712776078351919528325205285, −9.676521142858511169076551990972, −8.504177751150700582470175843934, −6.73800115580524426060838032892, −5.23904749971792351459217545098, −3.22922226701356345782655227584, −1.98206711207948506378978435290, 1.98206711207948506378978435290, 3.22922226701356345782655227584, 5.23904749971792351459217545098, 6.73800115580524426060838032892, 8.504177751150700582470175843934, 9.676521142858511169076551990972, 11.10712776078351919528325205285, 13.05248536667493958351745187368, 13.52331762803954829289086070196, 14.54680831832613543774524174107

Graph of the $Z$-function along the critical line