Properties

Label 2-38-1.1-c7-0-1
Degree $2$
Conductor $38$
Sign $1$
Analytic cond. $11.8706$
Root an. cond. $3.44537$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 92.4·3-s + 64·4-s − 426.·5-s − 739.·6-s + 875.·7-s + 512·8-s + 6.36e3·9-s − 3.41e3·10-s − 1.92e3·11-s − 5.91e3·12-s + 6.35e3·13-s + 7.00e3·14-s + 3.94e4·15-s + 4.09e3·16-s − 1.33e4·17-s + 5.09e4·18-s + 6.85e3·19-s − 2.72e4·20-s − 8.09e4·21-s − 1.53e4·22-s + 5.49e4·23-s − 4.73e4·24-s + 1.03e5·25-s + 5.08e4·26-s − 3.86e5·27-s + 5.60e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.97·3-s + 0.5·4-s − 1.52·5-s − 1.39·6-s + 0.964·7-s + 0.353·8-s + 2.91·9-s − 1.07·10-s − 0.436·11-s − 0.988·12-s + 0.801·13-s + 0.682·14-s + 3.01·15-s + 0.250·16-s − 0.659·17-s + 2.05·18-s + 0.229·19-s − 0.762·20-s − 1.90·21-s − 0.308·22-s + 0.941·23-s − 0.699·24-s + 1.32·25-s + 0.567·26-s − 3.77·27-s + 0.482·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $1$
Analytic conductor: \(11.8706\)
Root analytic conductor: \(3.44537\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.159028814\)
\(L(\frac12)\) \(\approx\) \(1.159028814\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
19 \( 1 - 6.85e3T \)
good3 \( 1 + 92.4T + 2.18e3T^{2} \)
5 \( 1 + 426.T + 7.81e4T^{2} \)
7 \( 1 - 875.T + 8.23e5T^{2} \)
11 \( 1 + 1.92e3T + 1.94e7T^{2} \)
13 \( 1 - 6.35e3T + 6.27e7T^{2} \)
17 \( 1 + 1.33e4T + 4.10e8T^{2} \)
23 \( 1 - 5.49e4T + 3.40e9T^{2} \)
29 \( 1 + 8.17e3T + 1.72e10T^{2} \)
31 \( 1 - 3.10e5T + 2.75e10T^{2} \)
37 \( 1 - 4.03e5T + 9.49e10T^{2} \)
41 \( 1 + 5.34e5T + 1.94e11T^{2} \)
43 \( 1 - 2.18e5T + 2.71e11T^{2} \)
47 \( 1 - 5.14e5T + 5.06e11T^{2} \)
53 \( 1 - 4.34e5T + 1.17e12T^{2} \)
59 \( 1 - 1.24e6T + 2.48e12T^{2} \)
61 \( 1 + 1.19e6T + 3.14e12T^{2} \)
67 \( 1 - 7.87e5T + 6.06e12T^{2} \)
71 \( 1 - 4.27e6T + 9.09e12T^{2} \)
73 \( 1 + 1.14e5T + 1.10e13T^{2} \)
79 \( 1 + 1.46e6T + 1.92e13T^{2} \)
83 \( 1 - 6.38e6T + 2.71e13T^{2} \)
89 \( 1 - 7.49e6T + 4.42e13T^{2} \)
97 \( 1 + 4.72e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.27192415567624564040689558842, −13.20095426412082243135132731038, −11.98524202329443079747875574678, −11.39268626731434536041737620665, −10.69259498468142845607361922200, −7.86795451400915874137527167136, −6.60870133113669648643913424612, −5.08163851258001102960551192924, −4.19889929609670336305552458801, −0.857478437018250913227287613304, 0.857478437018250913227287613304, 4.19889929609670336305552458801, 5.08163851258001102960551192924, 6.60870133113669648643913424612, 7.86795451400915874137527167136, 10.69259498468142845607361922200, 11.39268626731434536041737620665, 11.98524202329443079747875574678, 13.20095426412082243135132731038, 15.27192415567624564040689558842

Graph of the $Z$-function along the critical line