Properties

Label 4-38e2-1.1-c7e2-0-0
Degree $4$
Conductor $1444$
Sign $1$
Analytic cond. $140.911$
Root an. cond. $3.44537$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s − 61·3-s + 192·4-s + 175·5-s + 976·6-s − 2.59e3·7-s − 2.04e3·8-s − 899·9-s − 2.80e3·10-s + 1.04e3·11-s − 1.17e4·12-s + 1.46e4·13-s + 4.14e4·14-s − 1.06e4·15-s + 2.04e4·16-s + 2.96e4·17-s + 1.43e4·18-s − 1.37e4·19-s + 3.36e4·20-s + 1.58e5·21-s − 1.67e4·22-s + 6.99e4·23-s + 1.24e5·24-s + 2.06e4·25-s − 2.34e5·26-s + 2.03e5·27-s − 4.97e5·28-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.30·3-s + 3/2·4-s + 0.626·5-s + 1.84·6-s − 2.85·7-s − 1.41·8-s − 0.411·9-s − 0.885·10-s + 0.236·11-s − 1.95·12-s + 1.84·13-s + 4.03·14-s − 0.816·15-s + 5/4·16-s + 1.46·17-s + 0.581·18-s − 0.458·19-s + 0.939·20-s + 3.72·21-s − 0.334·22-s + 1.19·23-s + 1.84·24-s + 0.264·25-s − 2.61·26-s + 1.98·27-s − 4.28·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1444\)    =    \(2^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(140.911\)
Root analytic conductor: \(3.44537\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1444,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.2959885941\)
\(L(\frac12)\) \(\approx\) \(0.2959885941\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{3} T )^{2} \)
19$C_1$ \( ( 1 + p^{3} T )^{2} \)
good3$D_{4}$ \( 1 + 61 T + 1540 p T^{2} + 61 p^{7} T^{3} + p^{14} T^{4} \)
5$D_{4}$ \( 1 - 7 p^{2} T + 398 p^{2} T^{2} - 7 p^{9} T^{3} + p^{14} T^{4} \)
7$D_{4}$ \( 1 + 2592 T + 3302069 T^{2} + 2592 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 - 95 p T - 11749120 T^{2} - 95 p^{8} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 - 14647 T + 173951598 T^{2} - 14647 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 - 29616 T + 1034411785 T^{2} - 29616 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 - 69985 T + 6725368502 T^{2} - 69985 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 - 138821 T + 15732402524 T^{2} - 138821 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 + 199396 T + 48643192158 T^{2} + 199396 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 + 67840 T + 47468074998 T^{2} + 67840 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 + 539350 T + 389443599074 T^{2} + 539350 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 - 602639 T + 634135307466 T^{2} - 602639 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 + 1031975 T + 749722035926 T^{2} + 1031975 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 - 2138263 T + 2496539389382 T^{2} - 2138263 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 + 3936369 T + 8841477061504 T^{2} + 3936369 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 + 1027655 T + 2220629234304 T^{2} + 1027655 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 - 764949 T + 9626156199098 T^{2} - 764949 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 + 3572084 T + 9205034831954 T^{2} + 3572084 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 - 9069522 T + 42655939394627 T^{2} - 9069522 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 2753414 T - 12495532808130 T^{2} + 2753414 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 + 7643046 T + 68606421453310 T^{2} + 7643046 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 - 1393620 T + 87948683189458 T^{2} - 1393620 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 + 6921466 T + 112774027874802 T^{2} + 6921466 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.60371112166313091764822822264, −14.64207489531025652892322361865, −13.67897111515672893487798562660, −13.14988329594812363786290642313, −12.34989896592906312005896818868, −12.12377651495366380373995357089, −11.00933838033197834409507315237, −10.79301479765061739442322805669, −10.08588130994242838233765638962, −9.506723074617059862670597511685, −8.979934108385818725973002491780, −8.331890805388817026525985464913, −6.88854766110946134361761071661, −6.57715966607988348260165599917, −5.91709819697111846823935045847, −5.64372488215454239126092490370, −3.38305678550658870432199098515, −2.99613492014459687651056813198, −1.17816343943625185396063877845, −0.37490776553246150925276510491, 0.37490776553246150925276510491, 1.17816343943625185396063877845, 2.99613492014459687651056813198, 3.38305678550658870432199098515, 5.64372488215454239126092490370, 5.91709819697111846823935045847, 6.57715966607988348260165599917, 6.88854766110946134361761071661, 8.331890805388817026525985464913, 8.979934108385818725973002491780, 9.506723074617059862670597511685, 10.08588130994242838233765638962, 10.79301479765061739442322805669, 11.00933838033197834409507315237, 12.12377651495366380373995357089, 12.34989896592906312005896818868, 13.14988329594812363786290642313, 13.67897111515672893487798562660, 14.64207489531025652892322361865, 15.60371112166313091764822822264

Graph of the $Z$-function along the critical line