Properties

Label 20-38e10-1.1-c6e10-0-0
Degree $20$
Conductor $6.278\times 10^{15}$
Sign $1$
Analytic cond. $2.60696\times 10^{9}$
Root an. cond. $2.95669$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 160·4-s − 112·5-s − 224·7-s + 2.20e3·9-s + 3.64e3·11-s + 1.53e4·16-s − 1.04e4·17-s − 1.72e4·19-s + 1.79e4·20-s + 3.77e4·23-s − 9.78e4·25-s + 3.58e4·28-s + 2.50e4·35-s − 3.52e5·36-s + 6.30e3·43-s − 5.83e5·44-s − 2.46e5·45-s + 3.22e5·47-s − 6.81e5·49-s − 4.08e5·55-s + 4.26e5·61-s − 4.92e5·63-s − 1.14e6·64-s + 1.66e6·68-s − 7.86e5·73-s + 2.75e6·76-s − 8.16e5·77-s + ⋯
L(s)  = 1  − 5/2·4-s − 0.895·5-s − 0.653·7-s + 3.01·9-s + 2.73·11-s + 15/4·16-s − 2.12·17-s − 2.51·19-s + 2.23·20-s + 3.09·23-s − 6.26·25-s + 1.63·28-s + 0.585·35-s − 7.54·36-s + 0.0793·43-s − 6.84·44-s − 2.70·45-s + 3.10·47-s − 5.78·49-s − 2.45·55-s + 1.87·61-s − 1.97·63-s − 4.37·64-s + 5.30·68-s − 2.02·73-s + 6.28·76-s − 1.78·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{10} \cdot 19^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(7-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{10} \cdot 19^{10}\right)^{s/2} \, \Gamma_{\C}(s+3)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(2^{10} \cdot 19^{10}\)
Sign: $1$
Analytic conductor: \(2.60696\times 10^{9}\)
Root analytic conductor: \(2.95669\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 2^{10} \cdot 19^{10} ,\ ( \ : [3]^{10} ),\ 1 )\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.06156130576\)
\(L(\frac12)\) \(\approx\) \(0.06156130576\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{5} T^{2} )^{5} \)
19 \( 1 + 17230 T + 7817763 p T^{2} + 2124183392 p^{2} T^{3} + 27627228446 p^{4} T^{4} + 20756638956 p^{7} T^{5} + 27627228446 p^{10} T^{6} + 2124183392 p^{14} T^{7} + 7817763 p^{19} T^{8} + 17230 p^{24} T^{9} + p^{30} T^{10} \)
good3 \( 1 - 2200 T^{2} + 181270 p^{2} T^{4} - 57241582 p^{2} T^{6} + 2413949171 p^{5} T^{8} - 9031949427316 p^{4} T^{10} + 2413949171 p^{17} T^{12} - 57241582 p^{26} T^{14} + 181270 p^{38} T^{16} - 2200 p^{48} T^{18} + p^{60} T^{20} \)
5 \( ( 1 + 56 T + 2146 p^{2} T^{2} + 89502 p^{2} T^{3} + 2174881 p^{4} T^{4} + 13857148 p^{5} T^{5} + 2174881 p^{10} T^{6} + 89502 p^{14} T^{7} + 2146 p^{20} T^{8} + 56 p^{24} T^{9} + p^{30} T^{10} )^{2} \)
7 \( ( 1 + 16 p T + 359337 T^{2} + 34246958 T^{3} + 1268834993 p^{2} T^{4} + 5080318669710 T^{5} + 1268834993 p^{8} T^{6} + 34246958 p^{12} T^{7} + 359337 p^{18} T^{8} + 16 p^{25} T^{9} + p^{30} T^{10} )^{2} \)
11 \( ( 1 - 1822 T + 3854200 T^{2} - 5223454506 T^{3} + 11147752733431 T^{4} - 14402631038211088 T^{5} + 11147752733431 p^{6} T^{6} - 5223454506 p^{12} T^{7} + 3854200 p^{18} T^{8} - 1822 p^{24} T^{9} + p^{30} T^{10} )^{2} \)
13 \( 1 - 17666128 T^{2} + 11574881920638 p T^{4} - \)\(75\!\cdots\!02\)\( T^{6} + \)\(23\!\cdots\!57\)\( T^{8} - \)\(72\!\cdots\!08\)\( T^{10} + \)\(23\!\cdots\!57\)\( p^{12} T^{12} - \)\(75\!\cdots\!02\)\( p^{24} T^{14} + 11574881920638 p^{37} T^{16} - 17666128 p^{48} T^{18} + p^{60} T^{20} \)
17 \( ( 1 + 5210 T + 51971035 T^{2} + 61430519544 T^{3} + 668715425929933 T^{4} - 1842471159207853078 T^{5} + 668715425929933 p^{6} T^{6} + 61430519544 p^{12} T^{7} + 51971035 p^{18} T^{8} + 5210 p^{24} T^{9} + p^{30} T^{10} )^{2} \)
23 \( ( 1 - 18856 T + 571101934 T^{2} - 9065914883226 T^{3} + 164009711653394737 T^{4} - \)\(18\!\cdots\!76\)\( T^{5} + 164009711653394737 p^{6} T^{6} - 9065914883226 p^{12} T^{7} + 571101934 p^{18} T^{8} - 18856 p^{24} T^{9} + p^{30} T^{10} )^{2} \)
29 \( 1 - 2295730648 T^{2} + 3022757912409924870 T^{4} - \)\(26\!\cdots\!30\)\( T^{6} + \)\(18\!\cdots\!13\)\( T^{8} - \)\(11\!\cdots\!52\)\( T^{10} + \)\(18\!\cdots\!13\)\( p^{12} T^{12} - \)\(26\!\cdots\!30\)\( p^{24} T^{14} + 3022757912409924870 p^{36} T^{16} - 2295730648 p^{48} T^{18} + p^{60} T^{20} \)
31 \( 1 - 2408322202 T^{2} + 3352416717263589885 T^{4} - \)\(38\!\cdots\!88\)\( T^{6} + \)\(45\!\cdots\!50\)\( T^{8} - \)\(46\!\cdots\!52\)\( T^{10} + \)\(45\!\cdots\!50\)\( p^{12} T^{12} - \)\(38\!\cdots\!88\)\( p^{24} T^{14} + 3352416717263589885 p^{36} T^{16} - 2408322202 p^{48} T^{18} + p^{60} T^{20} \)
37 \( 1 + 2697991190 T^{2} + 11569645850506827021 T^{4} - \)\(95\!\cdots\!16\)\( T^{6} - \)\(55\!\cdots\!38\)\( T^{8} - \)\(35\!\cdots\!32\)\( T^{10} - \)\(55\!\cdots\!38\)\( p^{12} T^{12} - \)\(95\!\cdots\!16\)\( p^{24} T^{14} + 11569645850506827021 p^{36} T^{16} + 2697991190 p^{48} T^{18} + p^{60} T^{20} \)
41 \( 1 - 13733644282 T^{2} + 81015381804592963677 T^{4} - \)\(19\!\cdots\!72\)\( T^{6} - \)\(42\!\cdots\!54\)\( T^{8} + \)\(45\!\cdots\!60\)\( T^{10} - \)\(42\!\cdots\!54\)\( p^{12} T^{12} - \)\(19\!\cdots\!72\)\( p^{24} T^{14} + 81015381804592963677 p^{36} T^{16} - 13733644282 p^{48} T^{18} + p^{60} T^{20} \)
43 \( ( 1 - 3154 T + 21492915636 T^{2} - 397463731677654 T^{3} + \)\(21\!\cdots\!67\)\( T^{4} - \)\(45\!\cdots\!84\)\( T^{5} + \)\(21\!\cdots\!67\)\( p^{6} T^{6} - 397463731677654 p^{12} T^{7} + 21492915636 p^{18} T^{8} - 3154 p^{24} T^{9} + p^{30} T^{10} )^{2} \)
47 \( ( 1 - 161110 T + 48913956136 T^{2} - 5932854681494826 T^{3} + \)\(98\!\cdots\!11\)\( T^{4} - \)\(90\!\cdots\!28\)\( T^{5} + \)\(98\!\cdots\!11\)\( p^{6} T^{6} - 5932854681494826 p^{12} T^{7} + 48913956136 p^{18} T^{8} - 161110 p^{24} T^{9} + p^{30} T^{10} )^{2} \)
53 \( 1 - 128223896920 T^{2} + \)\(80\!\cdots\!82\)\( T^{4} - \)\(33\!\cdots\!10\)\( T^{6} + \)\(10\!\cdots\!21\)\( T^{8} - \)\(26\!\cdots\!80\)\( T^{10} + \)\(10\!\cdots\!21\)\( p^{12} T^{12} - \)\(33\!\cdots\!10\)\( p^{24} T^{14} + \)\(80\!\cdots\!82\)\( p^{36} T^{16} - 128223896920 p^{48} T^{18} + p^{60} T^{20} \)
59 \( 1 - 227814608464 T^{2} + \)\(27\!\cdots\!38\)\( T^{4} - \)\(22\!\cdots\!38\)\( T^{6} + \)\(13\!\cdots\!09\)\( T^{8} - \)\(65\!\cdots\!72\)\( T^{10} + \)\(13\!\cdots\!09\)\( p^{12} T^{12} - \)\(22\!\cdots\!38\)\( p^{24} T^{14} + \)\(27\!\cdots\!38\)\( p^{36} T^{16} - 227814608464 p^{48} T^{18} + p^{60} T^{20} \)
61 \( ( 1 - 213152 T + 149383123554 T^{2} - 43098614383216666 T^{3} + \)\(11\!\cdots\!33\)\( T^{4} - \)\(31\!\cdots\!88\)\( T^{5} + \)\(11\!\cdots\!33\)\( p^{6} T^{6} - 43098614383216666 p^{12} T^{7} + 149383123554 p^{18} T^{8} - 213152 p^{24} T^{9} + p^{30} T^{10} )^{2} \)
67 \( 1 - 396287882632 T^{2} + \)\(73\!\cdots\!06\)\( T^{4} - \)\(82\!\cdots\!98\)\( T^{6} + \)\(68\!\cdots\!13\)\( T^{8} - \)\(55\!\cdots\!12\)\( T^{10} + \)\(68\!\cdots\!13\)\( p^{12} T^{12} - \)\(82\!\cdots\!98\)\( p^{24} T^{14} + \)\(73\!\cdots\!06\)\( p^{36} T^{16} - 396287882632 p^{48} T^{18} + p^{60} T^{20} \)
71 \( 1 - 706078923010 T^{2} + \)\(26\!\cdots\!37\)\( T^{4} - \)\(68\!\cdots\!92\)\( T^{6} + \)\(12\!\cdots\!86\)\( T^{8} - \)\(18\!\cdots\!64\)\( T^{10} + \)\(12\!\cdots\!86\)\( p^{12} T^{12} - \)\(68\!\cdots\!92\)\( p^{24} T^{14} + \)\(26\!\cdots\!37\)\( p^{36} T^{16} - 706078923010 p^{48} T^{18} + p^{60} T^{20} \)
73 \( ( 1 + 393038 T + 262845231891 T^{2} + 80521825338052188 T^{3} + \)\(48\!\cdots\!17\)\( T^{4} + \)\(19\!\cdots\!18\)\( T^{5} + \)\(48\!\cdots\!17\)\( p^{6} T^{6} + 80521825338052188 p^{12} T^{7} + 262845231891 p^{18} T^{8} + 393038 p^{24} T^{9} + p^{30} T^{10} )^{2} \)
79 \( 1 - 1563370816666 T^{2} + \)\(12\!\cdots\!89\)\( T^{4} - \)\(62\!\cdots\!48\)\( T^{6} + \)\(23\!\cdots\!98\)\( T^{8} - \)\(64\!\cdots\!48\)\( T^{10} + \)\(23\!\cdots\!98\)\( p^{12} T^{12} - \)\(62\!\cdots\!48\)\( p^{24} T^{14} + \)\(12\!\cdots\!89\)\( p^{36} T^{16} - 1563370816666 p^{48} T^{18} + p^{60} T^{20} \)
83 \( ( 1 + 50750 T + 830672751385 T^{2} + 45811815263701056 T^{3} + \)\(33\!\cdots\!98\)\( T^{4} + \)\(24\!\cdots\!68\)\( T^{5} + \)\(33\!\cdots\!98\)\( p^{6} T^{6} + 45811815263701056 p^{12} T^{7} + 830672751385 p^{18} T^{8} + 50750 p^{24} T^{9} + p^{30} T^{10} )^{2} \)
89 \( 1 - 3396603770530 T^{2} + \)\(57\!\cdots\!37\)\( T^{4} - \)\(61\!\cdots\!32\)\( T^{6} + \)\(47\!\cdots\!86\)\( T^{8} - \)\(27\!\cdots\!84\)\( T^{10} + \)\(47\!\cdots\!86\)\( p^{12} T^{12} - \)\(61\!\cdots\!32\)\( p^{24} T^{14} + \)\(57\!\cdots\!37\)\( p^{36} T^{16} - 3396603770530 p^{48} T^{18} + p^{60} T^{20} \)
97 \( 1 - 5659092169474 T^{2} + \)\(15\!\cdots\!21\)\( T^{4} - \)\(28\!\cdots\!80\)\( T^{6} + \)\(37\!\cdots\!34\)\( T^{8} - \)\(35\!\cdots\!52\)\( T^{10} + \)\(37\!\cdots\!34\)\( p^{12} T^{12} - \)\(28\!\cdots\!80\)\( p^{24} T^{14} + \)\(15\!\cdots\!21\)\( p^{36} T^{16} - 5659092169474 p^{48} T^{18} + p^{60} T^{20} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.51385236615802927914568541628, −5.12486526502529185024049109391, −5.11314620554732559185490469663, −4.91331465708428092928447319842, −4.52800248332534957922935798640, −4.34254203975437924017092216848, −4.31739039182338991389965632526, −4.06428650327858334560016813089, −4.02479848563902741383354675949, −3.98386972499032034080511277307, −3.96878846235512310681459364185, −3.80495065365644384940558674838, −3.34342810804552054452169217127, −3.18887388143159736315617136492, −2.86686835526982583987332608739, −2.37719049816063630566633473771, −2.20031191778455532407894335979, −1.90564153685479980898852652225, −1.63320147756624966373125694287, −1.42248295170733489409069884644, −1.25344850822753627618803157842, −1.16626919971685974766930555358, −0.41397143803646312912193710737, −0.38400517740631515784228467933, −0.04982917952764402625666144158, 0.04982917952764402625666144158, 0.38400517740631515784228467933, 0.41397143803646312912193710737, 1.16626919971685974766930555358, 1.25344850822753627618803157842, 1.42248295170733489409069884644, 1.63320147756624966373125694287, 1.90564153685479980898852652225, 2.20031191778455532407894335979, 2.37719049816063630566633473771, 2.86686835526982583987332608739, 3.18887388143159736315617136492, 3.34342810804552054452169217127, 3.80495065365644384940558674838, 3.96878846235512310681459364185, 3.98386972499032034080511277307, 4.02479848563902741383354675949, 4.06428650327858334560016813089, 4.31739039182338991389965632526, 4.34254203975437924017092216848, 4.52800248332534957922935798640, 4.91331465708428092928447319842, 5.11314620554732559185490469663, 5.12486526502529185024049109391, 5.51385236615802927914568541628

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.