# Properties

 Degree $2$ Conductor $38$ Sign $-0.972 - 0.234i$ Motivic weight $5$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−3.75 + 1.36i)2-s + (−5.14 + 29.1i)3-s + (12.2 − 10.2i)4-s + (68.5 + 57.5i)5-s + (−20.5 − 116. i)6-s + (68.7 + 119. i)7-s + (−32.0 + 55.4i)8-s + (−597. − 217. i)9-s + (−336. − 122. i)10-s + (152. − 264. i)11-s + (237. + 410. i)12-s + (15.9 + 90.4i)13-s + (−421. − 353. i)14-s + (−2.03e3 + 1.70e3i)15-s + (44.4 − 252. i)16-s + (54.3 − 19.7i)17-s + ⋯
 L(s)  = 1 + (−0.664 + 0.241i)2-s + (−0.330 + 1.87i)3-s + (0.383 − 0.321i)4-s + (1.22 + 1.02i)5-s + (−0.233 − 1.32i)6-s + (0.529 + 0.917i)7-s + (−0.176 + 0.306i)8-s + (−2.46 − 0.895i)9-s + (−1.06 − 0.387i)10-s + (0.380 − 0.658i)11-s + (0.475 + 0.823i)12-s + (0.0261 + 0.148i)13-s + (−0.574 − 0.481i)14-s + (−2.33 + 1.95i)15-s + (0.0434 − 0.246i)16-s + (0.0455 − 0.0165i)17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 - 0.234i)\, \overline{\Lambda}(6-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.972 - 0.234i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$38$$    =    $$2 \cdot 19$$ Sign: $-0.972 - 0.234i$ Motivic weight: $$5$$ Character: $\chi_{38} (5, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 38,\ (\ :5/2),\ -0.972 - 0.234i)$$

## Particular Values

 $$L(3)$$ $$\approx$$ $$0.147199 + 1.23708i$$ $$L(\frac12)$$ $$\approx$$ $$0.147199 + 1.23708i$$ $$L(\frac{7}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (3.75 - 1.36i)T$$
19 $$1 + (-920. + 1.27e3i)T$$
good3 $$1 + (5.14 - 29.1i)T + (-228. - 83.1i)T^{2}$$
5 $$1 + (-68.5 - 57.5i)T + (542. + 3.07e3i)T^{2}$$
7 $$1 + (-68.7 - 119. i)T + (-8.40e3 + 1.45e4i)T^{2}$$
11 $$1 + (-152. + 264. i)T + (-8.05e4 - 1.39e5i)T^{2}$$
13 $$1 + (-15.9 - 90.4i)T + (-3.48e5 + 1.26e5i)T^{2}$$
17 $$1 + (-54.3 + 19.7i)T + (1.08e6 - 9.12e5i)T^{2}$$
23 $$1 + (-2.22e3 + 1.86e3i)T + (1.11e6 - 6.33e6i)T^{2}$$
29 $$1 + (5.07e3 + 1.84e3i)T + (1.57e7 + 1.31e7i)T^{2}$$
31 $$1 + (-2.96e3 - 5.14e3i)T + (-1.43e7 + 2.47e7i)T^{2}$$
37 $$1 + 287.T + 6.93e7T^{2}$$
41 $$1 + (240. - 1.36e3i)T + (-1.08e8 - 3.96e7i)T^{2}$$
43 $$1 + (-6.18e3 - 5.18e3i)T + (2.55e7 + 1.44e8i)T^{2}$$
47 $$1 + (1.47e3 + 537. i)T + (1.75e8 + 1.47e8i)T^{2}$$
53 $$1 + (2.96e4 - 2.49e4i)T + (7.26e7 - 4.11e8i)T^{2}$$
59 $$1 + (1.90e3 - 692. i)T + (5.47e8 - 4.59e8i)T^{2}$$
61 $$1 + (-1.66e4 + 1.40e4i)T + (1.46e8 - 8.31e8i)T^{2}$$
67 $$1 + (-5.93e4 - 2.15e4i)T + (1.03e9 + 8.67e8i)T^{2}$$
71 $$1 + (1.92e4 + 1.61e4i)T + (3.13e8 + 1.77e9i)T^{2}$$
73 $$1 + (-5.90e3 + 3.34e4i)T + (-1.94e9 - 7.09e8i)T^{2}$$
79 $$1 + (2.42e3 - 1.37e4i)T + (-2.89e9 - 1.05e9i)T^{2}$$
83 $$1 + (4.01e4 + 6.94e4i)T + (-1.96e9 + 3.41e9i)T^{2}$$
89 $$1 + (8.64e3 + 4.90e4i)T + (-5.24e9 + 1.90e9i)T^{2}$$
97 $$1 + (3.82e4 - 1.39e4i)T + (6.57e9 - 5.51e9i)T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−15.81951776928165121173093072282, −14.88134358110950747981735154228, −14.15240535113608796289885010775, −11.42388990574730391495470165084, −10.72701470910156754746403800522, −9.596954804556284649919876075745, −8.856765525352505689984520364295, −6.27233104352871197448671235209, −5.21067240844862921629912583258, −2.85833287872900030965558457112, 1.00519814906895539603939734219, 1.81802609134381555725091027169, 5.55552068160393133407887762196, 7.03148017442381195262131042765, 8.108325996693400991333855053770, 9.563138613879757643461870521377, 11.24970574783496713926547119602, 12.49163404167757324159871306148, 13.25660067884646484089116220287, 14.20095149949863315780407272801