# Properties

 Degree $2$ Conductor $38$ Sign $0.782 + 0.622i$ Motivic weight $5$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (3.06 − 2.57i)2-s + (25.6 + 9.34i)3-s + (2.77 − 15.7i)4-s + (−15.8 − 89.7i)5-s + (102. − 37.3i)6-s + (−22.7 + 39.4i)7-s + (−32.0 − 55.4i)8-s + (386. + 324. i)9-s + (−279. − 234. i)10-s + (203. + 353. i)11-s + (218. − 378. i)12-s + (−395. + 144. i)13-s + (31.6 + 179. i)14-s + (432. − 2.45e3i)15-s + (−240. − 87.5i)16-s + (−646. + 542. i)17-s + ⋯
 L(s)  = 1 + (0.541 − 0.454i)2-s + (1.64 + 0.599i)3-s + (0.0868 − 0.492i)4-s + (−0.283 − 1.60i)5-s + (1.16 − 0.424i)6-s + (−0.175 + 0.304i)7-s + (−0.176 − 0.306i)8-s + (1.58 + 1.33i)9-s + (−0.883 − 0.741i)10-s + (0.507 + 0.879i)11-s + (0.438 − 0.759i)12-s + (−0.649 + 0.236i)13-s + (0.0431 + 0.244i)14-s + (0.496 − 2.81i)15-s + (−0.234 − 0.0855i)16-s + (−0.542 + 0.455i)17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.782 + 0.622i)\, \overline{\Lambda}(6-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.782 + 0.622i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$38$$    =    $$2 \cdot 19$$ Sign: $0.782 + 0.622i$ Motivic weight: $$5$$ Character: $\chi_{38} (25, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 38,\ (\ :5/2),\ 0.782 + 0.622i)$$

## Particular Values

 $$L(3)$$ $$\approx$$ $$2.95837 - 1.03412i$$ $$L(\frac12)$$ $$\approx$$ $$2.95837 - 1.03412i$$ $$L(\frac{7}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (-3.06 + 2.57i)T$$
19 $$1 + (-1.16e3 + 1.05e3i)T$$
good3 $$1 + (-25.6 - 9.34i)T + (186. + 156. i)T^{2}$$
5 $$1 + (15.8 + 89.7i)T + (-2.93e3 + 1.06e3i)T^{2}$$
7 $$1 + (22.7 - 39.4i)T + (-8.40e3 - 1.45e4i)T^{2}$$
11 $$1 + (-203. - 353. i)T + (-8.05e4 + 1.39e5i)T^{2}$$
13 $$1 + (395. - 144. i)T + (2.84e5 - 2.38e5i)T^{2}$$
17 $$1 + (646. - 542. i)T + (2.46e5 - 1.39e6i)T^{2}$$
23 $$1 + (809. - 4.59e3i)T + (-6.04e6 - 2.20e6i)T^{2}$$
29 $$1 + (3.06e3 + 2.56e3i)T + (3.56e6 + 2.01e7i)T^{2}$$
31 $$1 + (-3.73e3 + 6.46e3i)T + (-1.43e7 - 2.47e7i)T^{2}$$
37 $$1 + 1.25e4T + 6.93e7T^{2}$$
41 $$1 + (-5.87e3 - 2.13e3i)T + (8.87e7 + 7.44e7i)T^{2}$$
43 $$1 + (-182. - 1.03e3i)T + (-1.38e8 + 5.02e7i)T^{2}$$
47 $$1 + (4.07e3 + 3.42e3i)T + (3.98e7 + 2.25e8i)T^{2}$$
53 $$1 + (-879. + 4.98e3i)T + (-3.92e8 - 1.43e8i)T^{2}$$
59 $$1 + (-5.50e3 + 4.61e3i)T + (1.24e8 - 7.04e8i)T^{2}$$
61 $$1 + (-8.08e3 + 4.58e4i)T + (-7.93e8 - 2.88e8i)T^{2}$$
67 $$1 + (3.00e4 + 2.51e4i)T + (2.34e8 + 1.32e9i)T^{2}$$
71 $$1 + (3.78e3 + 2.14e4i)T + (-1.69e9 + 6.17e8i)T^{2}$$
73 $$1 + (-1.32e4 - 4.81e3i)T + (1.58e9 + 1.33e9i)T^{2}$$
79 $$1 + (-8.91e4 - 3.24e4i)T + (2.35e9 + 1.97e9i)T^{2}$$
83 $$1 + (1.22e4 - 2.11e4i)T + (-1.96e9 - 3.41e9i)T^{2}$$
89 $$1 + (-4.79e4 + 1.74e4i)T + (4.27e9 - 3.58e9i)T^{2}$$
97 $$1 + (-9.98e4 + 8.37e4i)T + (1.49e9 - 8.45e9i)T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−15.22174775560765663521675987262, −13.83814617130456077223286000063, −12.99139188177246156556927116543, −11.85420740417864223087661024502, −9.605967567168667649563052176805, −9.198845920612403161508799060174, −7.75804700667122771700241015713, −4.91219931139745764341310627596, −3.84253919261039188116958020677, −1.93193693961976909973044143900, 2.67610965371333717857931479921, 3.62899021203143665671094908777, 6.64864815901453442852256568750, 7.41745659787821849733425253127, 8.688046236655336372664944910156, 10.40477586011048309079678888626, 12.12620294648911647076121796321, 13.62379934575675829745445989989, 14.31297788539534031326632615382, 14.84225416869721841176549003026