L(s) = 1 | + (3.06 − 2.57i)2-s + (−10.3 − 3.77i)3-s + (2.77 − 15.7i)4-s + (−9.06 − 51.4i)5-s + (−41.5 + 15.1i)6-s + (−107. + 186. i)7-s + (−32.0 − 55.4i)8-s + (−92.6 − 77.7i)9-s + (−159. − 134. i)10-s + (−273. − 473. i)11-s + (−88.3 + 153. i)12-s + (−242. + 88.1i)13-s + (149. + 849. i)14-s + (−100. + 567. i)15-s + (−240. − 87.5i)16-s + (1.45e3 − 1.21e3i)17-s + ⋯ |
L(s) = 1 | + (0.541 − 0.454i)2-s + (−0.665 − 0.242i)3-s + (0.0868 − 0.492i)4-s + (−0.162 − 0.919i)5-s + (−0.470 + 0.171i)6-s + (−0.831 + 1.44i)7-s + (−0.176 − 0.306i)8-s + (−0.381 − 0.320i)9-s + (−0.505 − 0.424i)10-s + (−0.681 − 1.18i)11-s + (−0.177 + 0.306i)12-s + (−0.397 + 0.144i)13-s + (0.204 + 1.15i)14-s + (−0.114 + 0.651i)15-s + (−0.234 − 0.0855i)16-s + (1.21 − 1.02i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 + 0.119i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.992 + 0.119i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.0502148 - 0.835274i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0502148 - 0.835274i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-3.06 + 2.57i)T \) |
| 19 | \( 1 + (61.8 - 1.57e3i)T \) |
good | 3 | \( 1 + (10.3 + 3.77i)T + (186. + 156. i)T^{2} \) |
| 5 | \( 1 + (9.06 + 51.4i)T + (-2.93e3 + 1.06e3i)T^{2} \) |
| 7 | \( 1 + (107. - 186. i)T + (-8.40e3 - 1.45e4i)T^{2} \) |
| 11 | \( 1 + (273. + 473. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + (242. - 88.1i)T + (2.84e5 - 2.38e5i)T^{2} \) |
| 17 | \( 1 + (-1.45e3 + 1.21e3i)T + (2.46e5 - 1.39e6i)T^{2} \) |
| 23 | \( 1 + (-387. + 2.19e3i)T + (-6.04e6 - 2.20e6i)T^{2} \) |
| 29 | \( 1 + (2.74e3 + 2.30e3i)T + (3.56e6 + 2.01e7i)T^{2} \) |
| 31 | \( 1 + (-4.22e3 + 7.31e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + 3.25e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + (8.41e3 + 3.06e3i)T + (8.87e7 + 7.44e7i)T^{2} \) |
| 43 | \( 1 + (-3.13e3 - 1.77e4i)T + (-1.38e8 + 5.02e7i)T^{2} \) |
| 47 | \( 1 + (1.55e4 + 1.30e4i)T + (3.98e7 + 2.25e8i)T^{2} \) |
| 53 | \( 1 + (-623. + 3.53e3i)T + (-3.92e8 - 1.43e8i)T^{2} \) |
| 59 | \( 1 + (2.35e3 - 1.97e3i)T + (1.24e8 - 7.04e8i)T^{2} \) |
| 61 | \( 1 + (1.00e3 - 5.68e3i)T + (-7.93e8 - 2.88e8i)T^{2} \) |
| 67 | \( 1 + (-2.96e4 - 2.48e4i)T + (2.34e8 + 1.32e9i)T^{2} \) |
| 71 | \( 1 + (-7.39e3 - 4.19e4i)T + (-1.69e9 + 6.17e8i)T^{2} \) |
| 73 | \( 1 + (4.16e4 + 1.51e4i)T + (1.58e9 + 1.33e9i)T^{2} \) |
| 79 | \( 1 + (1.03e4 + 3.77e3i)T + (2.35e9 + 1.97e9i)T^{2} \) |
| 83 | \( 1 + (-1.07e4 + 1.86e4i)T + (-1.96e9 - 3.41e9i)T^{2} \) |
| 89 | \( 1 + (-5.77e4 + 2.10e4i)T + (4.27e9 - 3.58e9i)T^{2} \) |
| 97 | \( 1 + (-1.20e5 + 1.01e5i)T + (1.49e9 - 8.45e9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.65477376744031859198801677831, −13.10360016607521877222507076484, −12.21607083327526370772762553366, −11.59663104569121870283417502706, −9.760205215921305060161170724689, −8.466703615485519757812450864360, −6.06622312557186142736599703321, −5.29712827482900717237399711419, −2.96616632955628662328762753684, −0.41985586360217012111305605205,
3.32157586782686626365494959596, 5.02127692998005472979493209725, 6.70597028517568969071017207841, 7.58246604171922092637423777701, 10.11517935268577134129193111144, 10.82449546999918320338963578066, 12.40508300321167631590137961408, 13.58203708029576193182488995570, 14.72161085832319710110389904928, 15.82135959388373227282202782591