Properties

Label 2-38-1.1-c5-0-1
Degree $2$
Conductor $38$
Sign $1$
Analytic cond. $6.09458$
Root an. cond. $2.46872$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 20.1·3-s + 16·4-s + 57.7·5-s − 80.7·6-s + 142.·7-s + 64·8-s + 164.·9-s + 231.·10-s + 643.·11-s − 323.·12-s + 115.·13-s + 571.·14-s − 1.16e3·15-s + 256·16-s − 1.74e3·17-s + 658.·18-s − 361·19-s + 924.·20-s − 2.88e3·21-s + 2.57e3·22-s + 3.70e3·23-s − 1.29e3·24-s + 210.·25-s + 460.·26-s + 1.58e3·27-s + 2.28e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.29·3-s + 0.5·4-s + 1.03·5-s − 0.915·6-s + 1.10·7-s + 0.353·8-s + 0.677·9-s + 0.730·10-s + 1.60·11-s − 0.647·12-s + 0.189·13-s + 0.779·14-s − 1.33·15-s + 0.250·16-s − 1.46·17-s + 0.479·18-s − 0.229·19-s + 0.516·20-s − 1.42·21-s + 1.13·22-s + 1.45·23-s − 0.457·24-s + 0.0673·25-s + 0.133·26-s + 0.417·27-s + 0.551·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $1$
Analytic conductor: \(6.09458\)
Root analytic conductor: \(2.46872\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.093248175\)
\(L(\frac12)\) \(\approx\) \(2.093248175\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
19 \( 1 + 361T \)
good3 \( 1 + 20.1T + 243T^{2} \)
5 \( 1 - 57.7T + 3.12e3T^{2} \)
7 \( 1 - 142.T + 1.68e4T^{2} \)
11 \( 1 - 643.T + 1.61e5T^{2} \)
13 \( 1 - 115.T + 3.71e5T^{2} \)
17 \( 1 + 1.74e3T + 1.41e6T^{2} \)
23 \( 1 - 3.70e3T + 6.43e6T^{2} \)
29 \( 1 + 5.36e3T + 2.05e7T^{2} \)
31 \( 1 + 4.35e3T + 2.86e7T^{2} \)
37 \( 1 - 5.96e3T + 6.93e7T^{2} \)
41 \( 1 - 3.57e3T + 1.15e8T^{2} \)
43 \( 1 + 9.15e3T + 1.47e8T^{2} \)
47 \( 1 - 9.30e3T + 2.29e8T^{2} \)
53 \( 1 + 1.18e4T + 4.18e8T^{2} \)
59 \( 1 + 5.06e4T + 7.14e8T^{2} \)
61 \( 1 - 2.34e4T + 8.44e8T^{2} \)
67 \( 1 + 5.82e4T + 1.35e9T^{2} \)
71 \( 1 - 5.02e4T + 1.80e9T^{2} \)
73 \( 1 - 1.65e4T + 2.07e9T^{2} \)
79 \( 1 - 1.02e4T + 3.07e9T^{2} \)
83 \( 1 + 9.84e4T + 3.93e9T^{2} \)
89 \( 1 + 1.44e5T + 5.58e9T^{2} \)
97 \( 1 - 1.18e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.09193929313047118974888352597, −14.07330896534582739522114063421, −12.85798146640900660363745645900, −11.45464697421242031975809755460, −10.98844985585254984354553594836, −9.133110885022791900535233447171, −6.78898380911210053438962378376, −5.76556100528320293582489464848, −4.53730493954727352679455580482, −1.59770935207162374156197745643, 1.59770935207162374156197745643, 4.53730493954727352679455580482, 5.76556100528320293582489464848, 6.78898380911210053438962378376, 9.133110885022791900535233447171, 10.98844985585254984354553594836, 11.45464697421242031975809755460, 12.85798146640900660363745645900, 14.07330896534582739522114063421, 15.09193929313047118974888352597

Graph of the $Z$-function along the critical line