Properties

Degree $2$
Conductor $38$
Sign $-0.942 + 0.333i$
Motivic weight $3$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.347 − 1.96i)2-s + (−4.43 − 3.71i)3-s + (−3.75 − 1.36i)4-s + (−5.82 + 2.11i)5-s + (−8.86 + 7.43i)6-s + (−5.61 − 9.71i)7-s + (−4 + 6.92i)8-s + (1.12 + 6.35i)9-s + (2.15 + 12.2i)10-s + (22.5 − 39.0i)11-s + (11.5 + 20.0i)12-s + (17.3 − 14.5i)13-s + (−21.0 + 7.67i)14-s + (33.6 + 12.2i)15-s + (12.2 + 10.2i)16-s + (−5.38 + 30.5i)17-s + ⋯
L(s)  = 1  + (0.122 − 0.696i)2-s + (−0.852 − 0.715i)3-s + (−0.469 − 0.171i)4-s + (−0.520 + 0.189i)5-s + (−0.602 + 0.505i)6-s + (−0.302 − 0.524i)7-s + (−0.176 + 0.306i)8-s + (0.0414 + 0.235i)9-s + (0.0680 + 0.386i)10-s + (0.618 − 1.07i)11-s + (0.278 + 0.481i)12-s + (0.370 − 0.310i)13-s + (−0.402 + 0.146i)14-s + (0.579 + 0.211i)15-s + (0.191 + 0.160i)16-s + (−0.0768 + 0.436i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.942 + 0.333i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.942 + 0.333i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $-0.942 + 0.333i$
Motivic weight: \(3\)
Character: $\chi_{38} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :3/2),\ -0.942 + 0.333i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.128418 - 0.747284i\)
\(L(\frac12)\) \(\approx\) \(0.128418 - 0.747284i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.347 + 1.96i)T \)
19 \( 1 + (-13.8 + 81.6i)T \)
good3 \( 1 + (4.43 + 3.71i)T + (4.68 + 26.5i)T^{2} \)
5 \( 1 + (5.82 - 2.11i)T + (95.7 - 80.3i)T^{2} \)
7 \( 1 + (5.61 + 9.71i)T + (-171.5 + 297. i)T^{2} \)
11 \( 1 + (-22.5 + 39.0i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (-17.3 + 14.5i)T + (381. - 2.16e3i)T^{2} \)
17 \( 1 + (5.38 - 30.5i)T + (-4.61e3 - 1.68e3i)T^{2} \)
23 \( 1 + (-135. - 49.3i)T + (9.32e3 + 7.82e3i)T^{2} \)
29 \( 1 + (-4.20 - 23.8i)T + (-2.29e4 + 8.34e3i)T^{2} \)
31 \( 1 + (151. + 262. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + 121.T + 5.06e4T^{2} \)
41 \( 1 + (79.4 + 66.6i)T + (1.19e4 + 6.78e4i)T^{2} \)
43 \( 1 + (-417. + 151. i)T + (6.09e4 - 5.11e4i)T^{2} \)
47 \( 1 + (-83.6 - 474. i)T + (-9.75e4 + 3.55e4i)T^{2} \)
53 \( 1 + (-414. - 150. i)T + (1.14e5 + 9.56e4i)T^{2} \)
59 \( 1 + (-42.1 + 238. i)T + (-1.92e5 - 7.02e4i)T^{2} \)
61 \( 1 + (-499. - 181. i)T + (1.73e5 + 1.45e5i)T^{2} \)
67 \( 1 + (126. + 716. i)T + (-2.82e5 + 1.02e5i)T^{2} \)
71 \( 1 + (-211. + 77.1i)T + (2.74e5 - 2.30e5i)T^{2} \)
73 \( 1 + (269. + 225. i)T + (6.75e4 + 3.83e5i)T^{2} \)
79 \( 1 + (461. + 387. i)T + (8.56e4 + 4.85e5i)T^{2} \)
83 \( 1 + (124. + 215. i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 + (1.27e3 - 1.06e3i)T + (1.22e5 - 6.94e5i)T^{2} \)
97 \( 1 + (146. - 833. i)T + (-8.57e5 - 3.12e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.25809844936001176373766930813, −13.67744048245828949539798333312, −12.77519443374358589994279002149, −11.47572447295808224325269654938, −10.94908387053702126457314641687, −9.077724418634424336549749395395, −7.24393443774299274976560114983, −5.81624153764807371359160333986, −3.63908570122628391781077396456, −0.72500703526505515992456136430, 4.20506019753539861250375713101, 5.50470822912783472397258660228, 7.03082056966835447908473353477, 8.787279735645327815321534686386, 10.11097372233997018123723392350, 11.62504035200185809967345794201, 12.60166026201837055253896685604, 14.32844220049579940488893489880, 15.50381388927933149983506011508, 16.22686978361732949366561555528

Graph of the $Z$-function along the critical line