Properties

Label 2-38-19.2-c2-0-3
Degree $2$
Conductor $38$
Sign $0.999 + 0.0376i$
Analytic cond. $1.03542$
Root an. cond. $1.01755$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.39 + 0.245i)2-s + (1.06 − 1.26i)3-s + (1.87 + 0.684i)4-s + (−4.36 + 1.58i)5-s + (1.78 − 1.49i)6-s + (−2.18 − 3.77i)7-s + (2.44 + 1.41i)8-s + (1.09 + 6.18i)9-s + (−6.46 + 1.13i)10-s + (−2.86 + 4.96i)11-s + (2.85 − 1.64i)12-s + (−11.9 − 14.2i)13-s + (−2.10 − 5.79i)14-s + (−2.61 + 7.19i)15-s + (3.06 + 2.57i)16-s + (1.14 − 6.49i)17-s + ⋯
L(s)  = 1  + (0.696 + 0.122i)2-s + (0.353 − 0.421i)3-s + (0.469 + 0.171i)4-s + (−0.872 + 0.317i)5-s + (0.297 − 0.249i)6-s + (−0.311 − 0.539i)7-s + (0.306 + 0.176i)8-s + (0.121 + 0.687i)9-s + (−0.646 + 0.113i)10-s + (−0.260 + 0.451i)11-s + (0.238 − 0.137i)12-s + (−0.920 − 1.09i)13-s + (−0.150 − 0.414i)14-s + (−0.174 + 0.479i)15-s + (0.191 + 0.160i)16-s + (0.0673 − 0.381i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0376i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0376i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $0.999 + 0.0376i$
Analytic conductor: \(1.03542\)
Root analytic conductor: \(1.01755\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :1),\ 0.999 + 0.0376i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.42916 - 0.0268815i\)
\(L(\frac12)\) \(\approx\) \(1.42916 - 0.0268815i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.39 - 0.245i)T \)
19 \( 1 + (-18.9 - 0.274i)T \)
good3 \( 1 + (-1.06 + 1.26i)T + (-1.56 - 8.86i)T^{2} \)
5 \( 1 + (4.36 - 1.58i)T + (19.1 - 16.0i)T^{2} \)
7 \( 1 + (2.18 + 3.77i)T + (-24.5 + 42.4i)T^{2} \)
11 \( 1 + (2.86 - 4.96i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 + (11.9 + 14.2i)T + (-29.3 + 166. i)T^{2} \)
17 \( 1 + (-1.14 + 6.49i)T + (-271. - 98.8i)T^{2} \)
23 \( 1 + (-23.7 - 8.65i)T + (405. + 340. i)T^{2} \)
29 \( 1 + (-3.49 + 0.616i)T + (790. - 287. i)T^{2} \)
31 \( 1 + (-25.7 + 14.8i)T + (480.5 - 832. i)T^{2} \)
37 \( 1 + 62.3iT - 1.36e3T^{2} \)
41 \( 1 + (41.6 - 49.6i)T + (-291. - 1.65e3i)T^{2} \)
43 \( 1 + (77.6 - 28.2i)T + (1.41e3 - 1.18e3i)T^{2} \)
47 \( 1 + (2.10 + 11.9i)T + (-2.07e3 + 755. i)T^{2} \)
53 \( 1 + (26.6 - 73.1i)T + (-2.15e3 - 1.80e3i)T^{2} \)
59 \( 1 + (-18.4 - 3.25i)T + (3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (65.9 + 23.9i)T + (2.85e3 + 2.39e3i)T^{2} \)
67 \( 1 + (-43.9 + 7.75i)T + (4.21e3 - 1.53e3i)T^{2} \)
71 \( 1 + (-9.63 - 26.4i)T + (-3.86e3 + 3.24e3i)T^{2} \)
73 \( 1 + (-45.3 - 38.0i)T + (925. + 5.24e3i)T^{2} \)
79 \( 1 + (19.7 - 23.5i)T + (-1.08e3 - 6.14e3i)T^{2} \)
83 \( 1 + (81.1 + 140. i)T + (-3.44e3 + 5.96e3i)T^{2} \)
89 \( 1 + (11.7 + 13.9i)T + (-1.37e3 + 7.80e3i)T^{2} \)
97 \( 1 + (-132. - 23.3i)T + (8.84e3 + 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.78625668186195245721055936016, −14.90172882604745192598168495736, −13.64156470091348948126950579529, −12.73951114617869945896980713281, −11.46217226557651279757162555510, −10.09461374354218747827857003171, −7.81333473420720688463761004118, −7.20074765855937627427897542453, −4.98312976618801595131740133966, −3.08439462431192012993607026923, 3.29824773426863691597142525551, 4.81821138862777999223130520541, 6.76710328364940461034908522613, 8.547567433431406393000229671257, 9.886876507456652025525457127896, 11.67824589591449784541821790544, 12.32038464966886522481401921852, 13.84229079280823418413640741150, 15.06690299736719115771751329977, 15.72612124144041455787451660503

Graph of the $Z$-function along the critical line