Properties

Label 2-38-19.11-c9-0-9
Degree $2$
Conductor $38$
Sign $-0.353 - 0.935i$
Analytic cond. $19.5713$
Root an. cond. $4.42395$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−8 + 13.8i)2-s + (−90.5 + 156. i)3-s + (−127. − 221. i)4-s + (−153. + 265. i)5-s + (−1.44e3 − 2.50e3i)6-s + 1.21e4·7-s + 4.09e3·8-s + (−6.54e3 − 1.13e4i)9-s + (−2.45e3 − 4.24e3i)10-s + 8.74e4·11-s + 4.63e4·12-s + (2.99e4 + 5.18e4i)13-s + (−9.71e4 + 1.68e5i)14-s + (−2.77e4 − 4.80e4i)15-s + (−3.27e4 + 5.67e4i)16-s + (1.53e5 − 2.65e5i)17-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.645 + 1.11i)3-s + (−0.249 − 0.433i)4-s + (−0.109 + 0.189i)5-s + (−0.456 − 0.790i)6-s + 1.91·7-s + 0.353·8-s + (−0.332 − 0.575i)9-s + (−0.0775 − 0.134i)10-s + 1.80·11-s + 0.645·12-s + (0.290 + 0.503i)13-s + (−0.675 + 1.17i)14-s + (−0.141 − 0.245i)15-s + (−0.125 + 0.216i)16-s + (0.444 − 0.770i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.353 - 0.935i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.353 - 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $-0.353 - 0.935i$
Analytic conductor: \(19.5713\)
Root analytic conductor: \(4.42395\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :9/2),\ -0.353 - 0.935i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.973368 + 1.40781i\)
\(L(\frac12)\) \(\approx\) \(0.973368 + 1.40781i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (8 - 13.8i)T \)
19 \( 1 + (8.38e4 + 5.61e5i)T \)
good3 \( 1 + (90.5 - 156. i)T + (-9.84e3 - 1.70e4i)T^{2} \)
5 \( 1 + (153. - 265. i)T + (-9.76e5 - 1.69e6i)T^{2} \)
7 \( 1 - 1.21e4T + 4.03e7T^{2} \)
11 \( 1 - 8.74e4T + 2.35e9T^{2} \)
13 \( 1 + (-2.99e4 - 5.18e4i)T + (-5.30e9 + 9.18e9i)T^{2} \)
17 \( 1 + (-1.53e5 + 2.65e5i)T + (-5.92e10 - 1.02e11i)T^{2} \)
23 \( 1 + (2.91e5 + 5.04e5i)T + (-9.00e11 + 1.55e12i)T^{2} \)
29 \( 1 + (-9.90e5 - 1.71e6i)T + (-7.25e12 + 1.25e13i)T^{2} \)
31 \( 1 - 5.90e6T + 2.64e13T^{2} \)
37 \( 1 - 5.27e4T + 1.29e14T^{2} \)
41 \( 1 + (5.83e6 - 1.01e7i)T + (-1.63e14 - 2.83e14i)T^{2} \)
43 \( 1 + (1.82e6 - 3.16e6i)T + (-2.51e14 - 4.35e14i)T^{2} \)
47 \( 1 + (-6.79e6 - 1.17e7i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 + (4.60e7 + 7.97e7i)T + (-1.64e15 + 2.85e15i)T^{2} \)
59 \( 1 + (-6.58e7 + 1.13e8i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (8.63e7 + 1.49e8i)T + (-5.84e15 + 1.01e16i)T^{2} \)
67 \( 1 + (-9.56e7 - 1.65e8i)T + (-1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 + (6.93e7 - 1.20e8i)T + (-2.29e16 - 3.97e16i)T^{2} \)
73 \( 1 + (2.01e8 - 3.49e8i)T + (-2.94e16 - 5.09e16i)T^{2} \)
79 \( 1 + (2.86e8 - 4.96e8i)T + (-5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 + 1.71e8T + 1.86e17T^{2} \)
89 \( 1 + (1.32e7 + 2.28e7i)T + (-1.75e17 + 3.03e17i)T^{2} \)
97 \( 1 + (1.87e8 - 3.24e8i)T + (-3.80e17 - 6.58e17i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74933818534795709153325786314, −14.14627034108220792072431227270, −11.57078556649500159764466297636, −11.14484701465446701774409805786, −9.613014407602488219346461609986, −8.460362851174478850134241087322, −6.82426460741154268608166130684, −5.12661387358173003266272457633, −4.27407972342922352338792436653, −1.25857420076709903134561527464, 1.06231616955327686189597501117, 1.63305202277905913840274685594, 4.22883567571409134599118170626, 6.04175007875201320593231201330, 7.66854527419865571313348205168, 8.622153562018027665143268140326, 10.57879635395264594149351795791, 11.96315126715240450173637103365, 12.01069588646880054078944669555, 13.77175723548995471773406980009

Graph of the $Z$-function along the critical line