Properties

Label 2-378-189.41-c1-0-13
Degree $2$
Conductor $378$
Sign $0.961 + 0.275i$
Analytic cond. $3.01834$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.984 + 0.173i)2-s + (1.34 − 1.09i)3-s + (0.939 − 0.342i)4-s + (2.60 + 2.18i)5-s + (−1.13 + 1.30i)6-s + (1.18 − 2.36i)7-s + (−0.866 + 0.5i)8-s + (0.616 − 2.93i)9-s + (−2.94 − 1.69i)10-s + (0.604 + 0.720i)11-s + (0.890 − 1.48i)12-s + (0.436 + 0.0769i)13-s + (−0.753 + 2.53i)14-s + (5.88 + 0.0950i)15-s + (0.766 − 0.642i)16-s + (−1.11 + 1.92i)17-s + ⋯
L(s)  = 1  + (−0.696 + 0.122i)2-s + (0.776 − 0.630i)3-s + (0.469 − 0.171i)4-s + (1.16 + 0.976i)5-s + (−0.463 + 0.534i)6-s + (0.446 − 0.894i)7-s + (−0.306 + 0.176i)8-s + (0.205 − 0.978i)9-s + (−0.929 − 0.536i)10-s + (0.182 + 0.217i)11-s + (0.256 − 0.428i)12-s + (0.121 + 0.0213i)13-s + (−0.201 + 0.677i)14-s + (1.51 + 0.0245i)15-s + (0.191 − 0.160i)16-s + (−0.269 + 0.467i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.961 + 0.275i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.961 + 0.275i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $0.961 + 0.275i$
Analytic conductor: \(3.01834\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1/2),\ 0.961 + 0.275i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.55066 - 0.217795i\)
\(L(\frac12)\) \(\approx\) \(1.55066 - 0.217795i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.984 - 0.173i)T \)
3 \( 1 + (-1.34 + 1.09i)T \)
7 \( 1 + (-1.18 + 2.36i)T \)
good5 \( 1 + (-2.60 - 2.18i)T + (0.868 + 4.92i)T^{2} \)
11 \( 1 + (-0.604 - 0.720i)T + (-1.91 + 10.8i)T^{2} \)
13 \( 1 + (-0.436 - 0.0769i)T + (12.2 + 4.44i)T^{2} \)
17 \( 1 + (1.11 - 1.92i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (6.85 - 3.95i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.171 + 0.470i)T + (-17.6 + 14.7i)T^{2} \)
29 \( 1 + (-8.00 + 1.41i)T + (27.2 - 9.91i)T^{2} \)
31 \( 1 + (2.68 + 7.37i)T + (-23.7 + 19.9i)T^{2} \)
37 \( 1 + (0.250 - 0.433i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.16 - 6.61i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-3.79 + 3.18i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (2.17 + 0.790i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 - 7.36iT - 53T^{2} \)
59 \( 1 + (-0.00253 - 0.00213i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (4.17 - 11.4i)T + (-46.7 - 39.2i)T^{2} \)
67 \( 1 + (-2.67 + 15.1i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (10.3 + 5.98i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-3.87 + 2.23i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-1.93 - 10.9i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (-2.34 - 13.2i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (4.96 + 8.60i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (1.02 + 1.21i)T + (-16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92126823959628116523449362511, −10.31494961428085063554594638302, −9.544466460143723395362043737254, −8.446849838526515830370784098829, −7.65276784847183063850606325685, −6.61390756930966099228217258294, −6.15211286726391502093221031774, −4.08057081344383605169414417515, −2.55373641476773026480057045881, −1.58949184118842411674890613271, 1.74758132316670275864190571826, 2.73905438584388191501318456597, 4.56718389560642235209748961602, 5.44298530360082775478107301841, 6.70304531176080283546597875638, 8.318477658737538395286648138072, 8.792123721401644163989834563290, 9.293186419590988552750284828453, 10.26752208469111144518895170451, 11.10210875852608005233194034442

Graph of the $Z$-function along the critical line