Properties

Label 2-378-189.79-c1-0-5
Degree $2$
Conductor $378$
Sign $-0.128 - 0.991i$
Analytic cond. $3.01834$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.766 + 0.642i)2-s + (−1.69 + 0.340i)3-s + (0.173 + 0.984i)4-s + (−0.294 − 1.66i)5-s + (−1.51 − 0.831i)6-s + (1.80 + 1.93i)7-s + (−0.500 + 0.866i)8-s + (2.76 − 1.15i)9-s + (0.846 − 1.46i)10-s + (−0.980 + 5.56i)11-s + (−0.629 − 1.61i)12-s + (0.0358 + 0.203i)13-s + (0.142 + 2.64i)14-s + (1.06 + 2.73i)15-s + (−0.939 + 0.342i)16-s + (−1.17 + 2.03i)17-s + ⋯
L(s)  = 1  + (0.541 + 0.454i)2-s + (−0.980 + 0.196i)3-s + (0.0868 + 0.492i)4-s + (−0.131 − 0.745i)5-s + (−0.620 − 0.339i)6-s + (0.683 + 0.730i)7-s + (−0.176 + 0.306i)8-s + (0.922 − 0.385i)9-s + (0.267 − 0.463i)10-s + (−0.295 + 1.67i)11-s + (−0.181 − 0.465i)12-s + (0.00993 + 0.0563i)13-s + (0.0380 + 0.706i)14-s + (0.275 + 0.705i)15-s + (−0.234 + 0.0855i)16-s + (−0.285 + 0.494i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.128 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.128 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $-0.128 - 0.991i$
Analytic conductor: \(3.01834\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1/2),\ -0.128 - 0.991i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.852880 + 0.970164i\)
\(L(\frac12)\) \(\approx\) \(0.852880 + 0.970164i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.766 - 0.642i)T \)
3 \( 1 + (1.69 - 0.340i)T \)
7 \( 1 + (-1.80 - 1.93i)T \)
good5 \( 1 + (0.294 + 1.66i)T + (-4.69 + 1.71i)T^{2} \)
11 \( 1 + (0.980 - 5.56i)T + (-10.3 - 3.76i)T^{2} \)
13 \( 1 + (-0.0358 - 0.203i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (1.17 - 2.03i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1.71 - 2.96i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.344 - 0.289i)T + (3.99 - 22.6i)T^{2} \)
29 \( 1 + (1.32 - 7.48i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (0.450 + 2.55i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 - 2.20T + 37T^{2} \)
41 \( 1 + (1.67 + 9.50i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (-5.43 - 4.55i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (-1.59 + 9.02i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + (5.33 + 9.24i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-6.10 - 2.22i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (0.548 - 3.11i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-8.65 + 7.26i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (0.0841 + 0.145i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 - 13.4T + 73T^{2} \)
79 \( 1 + (11.5 + 9.65i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (0.953 - 5.40i)T + (-77.9 - 28.3i)T^{2} \)
89 \( 1 + (1.50 + 2.61i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (12.0 + 10.1i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.89637280525342468405516553144, −10.88511552101134978201753603633, −9.813842681096583771834104824028, −8.784365478325102331591926563093, −7.68817184567182696355813693030, −6.75430592538975703903363799823, −5.48752891863655693646781151895, −4.97135778622021732972028755897, −4.05710806757061964134741543376, −1.86386155323252214304205326161, 0.879433258433062068747699651222, 2.81267511974142343367714786363, 4.14678781713963460625071826597, 5.22144504807591379408608181705, 6.18838339157219850145531841409, 7.11302756377570934564713387073, 8.114820349840312049400458896915, 9.657374186668207606396549489201, 10.83380223418495269219584660293, 11.06782455090756540633897260775

Graph of the $Z$-function along the critical line