Properties

Label 2-378-27.16-c1-0-4
Degree $2$
Conductor $378$
Sign $0.852 - 0.522i$
Analytic cond. $3.01834$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 − 0.642i)2-s + (−0.910 + 1.47i)3-s + (0.173 + 0.984i)4-s + (1.95 + 0.710i)5-s + (1.64 − 0.543i)6-s + (0.173 − 0.984i)7-s + (0.500 − 0.866i)8-s + (−1.34 − 2.68i)9-s + (−1.03 − 1.80i)10-s + (2.65 − 0.967i)11-s + (−1.60 − 0.640i)12-s + (2.40 − 2.01i)13-s + (−0.766 + 0.642i)14-s + (−2.82 + 2.23i)15-s + (−0.939 + 0.342i)16-s + (4.06 + 7.03i)17-s + ⋯
L(s)  = 1  + (−0.541 − 0.454i)2-s + (−0.525 + 0.850i)3-s + (0.0868 + 0.492i)4-s + (0.873 + 0.317i)5-s + (0.671 − 0.221i)6-s + (0.0656 − 0.372i)7-s + (0.176 − 0.306i)8-s + (−0.447 − 0.894i)9-s + (−0.328 − 0.569i)10-s + (0.801 − 0.291i)11-s + (−0.464 − 0.185i)12-s + (0.666 − 0.559i)13-s + (−0.204 + 0.171i)14-s + (−0.729 + 0.575i)15-s + (−0.234 + 0.0855i)16-s + (0.984 + 1.70i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.852 - 0.522i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.852 - 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $0.852 - 0.522i$
Analytic conductor: \(3.01834\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (43, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1/2),\ 0.852 - 0.522i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.02271 + 0.288488i\)
\(L(\frac12)\) \(\approx\) \(1.02271 + 0.288488i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.766 + 0.642i)T \)
3 \( 1 + (0.910 - 1.47i)T \)
7 \( 1 + (-0.173 + 0.984i)T \)
good5 \( 1 + (-1.95 - 0.710i)T + (3.83 + 3.21i)T^{2} \)
11 \( 1 + (-2.65 + 0.967i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (-2.40 + 2.01i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (-4.06 - 7.03i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (3.84 - 6.66i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.429 + 2.43i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-7.27 - 6.10i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (0.895 + 5.07i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (-1.11 - 1.92i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.73 + 1.45i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (-1.30 + 0.476i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (1.84 - 10.4i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + 0.406T + 53T^{2} \)
59 \( 1 + (-3.88 - 1.41i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-2.59 + 14.7i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (6.74 - 5.65i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (6.92 + 11.9i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (4.09 - 7.10i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (8.36 + 7.01i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (0.617 + 0.518i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-0.556 + 0.964i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-14.5 + 5.31i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.07355786998963048085652161763, −10.28841591102183656043243710892, −10.09837978703266118530887159161, −8.843383854777236470274757766734, −8.053078948945796915106485925930, −6.27096147154755027109901080903, −5.96039806857610018632744149205, −4.22571733874453146814188799044, −3.33464581599704656427150605138, −1.44295903509387543128718076270, 1.10573913444310156673548427112, 2.42170341399237778775780928437, 4.78140195094670395318780467367, 5.72961908615980250285955513118, 6.59692641170292820324621890621, 7.31655367277150766437472605210, 8.617377158512178633638190116202, 9.262068165601684075548940140278, 10.22736818528937195677983891303, 11.50601074741287484659846046703

Graph of the $Z$-function along the critical line