Properties

Label 2-378-27.13-c1-0-5
Degree $2$
Conductor $378$
Sign $0.580 - 0.814i$
Analytic cond. $3.01834$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.173 − 0.984i)2-s + (0.0120 + 1.73i)3-s + (−0.939 + 0.342i)4-s + (2.57 + 2.16i)5-s + (1.70 − 0.312i)6-s + (−0.939 − 0.342i)7-s + (0.5 + 0.866i)8-s + (−2.99 + 0.0416i)9-s + (1.68 − 2.91i)10-s + (3.50 − 2.94i)11-s + (−0.603 − 1.62i)12-s + (−0.288 + 1.63i)13-s + (−0.173 + 0.984i)14-s + (−3.71 + 4.49i)15-s + (0.766 − 0.642i)16-s + (−3.24 + 5.62i)17-s + ⋯
L(s)  = 1  + (−0.122 − 0.696i)2-s + (0.00693 + 0.999i)3-s + (−0.469 + 0.171i)4-s + (1.15 + 0.967i)5-s + (0.695 − 0.127i)6-s + (−0.355 − 0.129i)7-s + (0.176 + 0.306i)8-s + (−0.999 + 0.0138i)9-s + (0.532 − 0.921i)10-s + (1.05 − 0.887i)11-s + (−0.174 − 0.468i)12-s + (−0.0800 + 0.454i)13-s + (−0.0464 + 0.263i)14-s + (−0.959 + 1.15i)15-s + (0.191 − 0.160i)16-s + (−0.787 + 1.36i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $0.580 - 0.814i$
Analytic conductor: \(3.01834\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1/2),\ 0.580 - 0.814i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.21624 + 0.626753i\)
\(L(\frac12)\) \(\approx\) \(1.21624 + 0.626753i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.173 + 0.984i)T \)
3 \( 1 + (-0.0120 - 1.73i)T \)
7 \( 1 + (0.939 + 0.342i)T \)
good5 \( 1 + (-2.57 - 2.16i)T + (0.868 + 4.92i)T^{2} \)
11 \( 1 + (-3.50 + 2.94i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (0.288 - 1.63i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (3.24 - 5.62i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-3.61 - 6.26i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (5.38 - 1.95i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (1.17 + 6.69i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-8.09 + 2.94i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (1.49 - 2.58i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (0.427 - 2.42i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-7.16 + 6.01i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (3.60 + 1.31i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 - 1.10T + 53T^{2} \)
59 \( 1 + (0.262 + 0.220i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (-4.91 - 1.78i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-1.25 + 7.12i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (-4.99 + 8.65i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (6.30 + 10.9i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-0.931 - 5.28i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (2.04 + 11.5i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (3.77 + 6.53i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (5.21 - 4.37i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.33385090820828308715262123902, −10.33539493855588551384533927581, −9.951889981159950861636929015345, −9.165489540901277782280739152091, −8.113201014500249471249167560556, −6.24706993113895463708757149072, −5.94120123693089291490747798729, −4.14189987449637822565587124445, −3.37499785895821840265339964716, −2.01436005752283909463394293739, 1.04067618346151303499055817806, 2.51847555501095664349928624417, 4.69817366918939020047886317133, 5.55326971304491867080638815733, 6.62178442477954360889239324474, 7.17741360823195040316350556248, 8.556188902432649906279090251227, 9.222824174080217837813155579278, 9.841646720026871330733677768237, 11.46255352138540298481164668168

Graph of the $Z$-function along the critical line