Properties

Label 2-378-27.22-c1-0-7
Degree $2$
Conductor $378$
Sign $0.305 + 0.952i$
Analytic cond. $3.01834$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 + 0.642i)2-s + (−1.15 + 1.29i)3-s + (0.173 − 0.984i)4-s + (−2.06 + 0.753i)5-s + (0.0560 − 1.73i)6-s + (0.173 + 0.984i)7-s + (0.500 + 0.866i)8-s + (−0.328 − 2.98i)9-s + (1.10 − 1.90i)10-s + (−5.37 − 1.95i)11-s + (1.06 + 1.36i)12-s + (2.61 + 2.19i)13-s + (−0.766 − 0.642i)14-s + (1.42 − 3.54i)15-s + (−0.939 − 0.342i)16-s + (1.91 − 3.31i)17-s + ⋯
L(s)  = 1  + (−0.541 + 0.454i)2-s + (−0.667 + 0.744i)3-s + (0.0868 − 0.492i)4-s + (−0.925 + 0.336i)5-s + (0.0228 − 0.706i)6-s + (0.0656 + 0.372i)7-s + (0.176 + 0.306i)8-s + (−0.109 − 0.993i)9-s + (0.348 − 0.603i)10-s + (−1.62 − 0.590i)11-s + (0.308 + 0.393i)12-s + (0.724 + 0.608i)13-s + (−0.204 − 0.171i)14-s + (0.366 − 0.914i)15-s + (−0.234 − 0.0855i)16-s + (0.463 − 0.803i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.305 + 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.305 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $0.305 + 0.952i$
Analytic conductor: \(3.01834\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (211, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1/2),\ 0.305 + 0.952i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.169253 - 0.123491i\)
\(L(\frac12)\) \(\approx\) \(0.169253 - 0.123491i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.766 - 0.642i)T \)
3 \( 1 + (1.15 - 1.29i)T \)
7 \( 1 + (-0.173 - 0.984i)T \)
good5 \( 1 + (2.06 - 0.753i)T + (3.83 - 3.21i)T^{2} \)
11 \( 1 + (5.37 + 1.95i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (-2.61 - 2.19i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (-1.91 + 3.31i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.761 + 1.31i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.898 + 5.09i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (0.792 - 0.665i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-1.63 + 9.29i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (-1.40 + 2.43i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.73 - 1.45i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (6.53 + 2.37i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (-0.242 - 1.37i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + 7.06T + 53T^{2} \)
59 \( 1 + (4.62 - 1.68i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (0.390 + 2.21i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (9.77 + 8.20i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (2.19 - 3.79i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-0.0771 - 0.133i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (8.88 - 7.45i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (2.52 - 2.12i)T + (14.4 - 81.7i)T^{2} \)
89 \( 1 + (6.18 + 10.7i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (7.77 + 2.83i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.15207139967587273968695189728, −10.35723649400829124170624868439, −9.345504905943491803469739467209, −8.368948644724548821960083610896, −7.53313782380466207764749548965, −6.34464367255399787015157315186, −5.42311870849140368373029995880, −4.36010973292901395980504918556, −2.94814229120724264391148254419, −0.18829262980906649372264101176, 1.46086480417294976792924673431, 3.19141236490110513849903019010, 4.64761748288521124520220416086, 5.76955345173946833740419292228, 7.17942763390166204355040609419, 7.925840375449905626544076446291, 8.385337755222518515279186404138, 10.11000696966439841569229177976, 10.66814260138686267558057944363, 11.50220190212957335422822887894

Graph of the $Z$-function along the critical line