Properties

Degree 2
Conductor $ 2 \cdot 3^{3} \cdot 7 $
Sign $0.987 + 0.160i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.766 + 0.642i)2-s + (−1.67 − 0.456i)3-s + (0.173 + 0.984i)4-s + (−1.78 − 0.648i)5-s + (−0.986 − 1.42i)6-s + (0.173 − 0.984i)7-s + (−0.500 + 0.866i)8-s + (2.58 + 1.52i)9-s + (−0.947 − 1.64i)10-s + (4.90 − 1.78i)11-s + (0.159 − 1.72i)12-s + (4.25 − 3.57i)13-s + (0.766 − 0.642i)14-s + (2.67 + 1.89i)15-s + (−0.939 + 0.342i)16-s + (2.07 + 3.59i)17-s + ⋯
L(s)  = 1  + (0.541 + 0.454i)2-s + (−0.964 − 0.263i)3-s + (0.0868 + 0.492i)4-s + (−0.796 − 0.289i)5-s + (−0.402 − 0.581i)6-s + (0.0656 − 0.372i)7-s + (−0.176 + 0.306i)8-s + (0.860 + 0.508i)9-s + (−0.299 − 0.519i)10-s + (1.47 − 0.537i)11-s + (0.0461 − 0.497i)12-s + (1.18 − 0.990i)13-s + (0.204 − 0.171i)14-s + (0.691 + 0.489i)15-s + (−0.234 + 0.0855i)16-s + (0.504 + 0.873i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.160i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 + 0.160i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $0.987 + 0.160i$
motivic weight  =  \(1\)
character  :  $\chi_{378} (43, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 378,\ (\ :1/2),\ 0.987 + 0.160i)$
$L(1)$  $\approx$  $1.29709 - 0.104541i$
$L(\frac12)$  $\approx$  $1.29709 - 0.104541i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.766 - 0.642i)T \)
3 \( 1 + (1.67 + 0.456i)T \)
7 \( 1 + (-0.173 + 0.984i)T \)
good5 \( 1 + (1.78 + 0.648i)T + (3.83 + 3.21i)T^{2} \)
11 \( 1 + (-4.90 + 1.78i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (-4.25 + 3.57i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (-2.07 - 3.59i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1.35 + 2.34i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.529 - 3.00i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (3.78 + 3.17i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (1.79 + 10.1i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (-5.29 - 9.17i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (0.771 - 0.647i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (-8.48 + 3.08i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (1.04 - 5.90i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + 1.27T + 53T^{2} \)
59 \( 1 + (3.28 + 1.19i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (2.40 - 13.6i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-6.83 + 5.73i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (1.93 + 3.35i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-5.00 + 8.67i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (7.44 + 6.24i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (-2.87 - 2.41i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (6.98 - 12.1i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (1.06 - 0.387i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−11.46175788179277097016489658097, −10.88351352611071676328957459944, −9.486393066379810393171977265505, −8.160343934085681784309506722970, −7.55364076472082720894159146507, −6.26535855157678456401612811057, −5.78870474981626470722131101689, −4.32088924429220977519137858998, −3.65349180541093577790132769535, −1.03555920838297663525483149733, 1.43556569145556678055849144973, 3.59479794811347143620665616144, 4.24208468983781471716377898396, 5.45796631479852392960911331792, 6.51636565913497960740677875275, 7.24742088710921904820588389901, 8.937155640667549845825739419027, 9.670079361554250469296375558317, 10.97287851007978031010090438383, 11.39046450675757681166959542403

Graph of the $Z$-function along the critical line