Properties

Label 2-378-27.16-c1-0-16
Degree $2$
Conductor $378$
Sign $0.993 - 0.116i$
Analytic cond. $3.01834$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.766 + 0.642i)2-s + (1.11 − 1.32i)3-s + (0.173 + 0.984i)4-s + (2.37 + 0.866i)5-s + (1.70 − 0.300i)6-s + (0.173 − 0.984i)7-s + (−0.500 + 0.866i)8-s + (−0.520 − 2.95i)9-s + (1.26 + 2.19i)10-s + (−0.286 + 0.104i)11-s + (1.5 + 0.866i)12-s + (−1.43 + 1.20i)13-s + (0.766 − 0.642i)14-s + (3.79 − 2.19i)15-s + (−0.939 + 0.342i)16-s + (−0.592 − 1.02i)17-s + ⋯
L(s)  = 1  + (0.541 + 0.454i)2-s + (0.642 − 0.766i)3-s + (0.0868 + 0.492i)4-s + (1.06 + 0.387i)5-s + (0.696 − 0.122i)6-s + (0.0656 − 0.372i)7-s + (−0.176 + 0.306i)8-s + (−0.173 − 0.984i)9-s + (0.400 + 0.693i)10-s + (−0.0865 + 0.0314i)11-s + (0.433 + 0.249i)12-s + (−0.399 + 0.335i)13-s + (0.204 − 0.171i)14-s + (0.980 − 0.566i)15-s + (−0.234 + 0.0855i)16-s + (−0.143 − 0.248i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.116i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $0.993 - 0.116i$
Analytic conductor: \(3.01834\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (43, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1/2),\ 0.993 - 0.116i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.43029 + 0.141548i\)
\(L(\frac12)\) \(\approx\) \(2.43029 + 0.141548i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.766 - 0.642i)T \)
3 \( 1 + (-1.11 + 1.32i)T \)
7 \( 1 + (-0.173 + 0.984i)T \)
good5 \( 1 + (-2.37 - 0.866i)T + (3.83 + 3.21i)T^{2} \)
11 \( 1 + (0.286 - 0.104i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (1.43 - 1.20i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (0.592 + 1.02i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (2.31 - 4.01i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.215 + 1.22i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-2.14 - 1.80i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (0.847 + 4.80i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (-5.41 - 9.37i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (2.69 - 2.26i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (-4.04 + 1.47i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-1.59 + 9.07i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + 11.4T + 53T^{2} \)
59 \( 1 + (5.01 + 1.82i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (1.96 - 11.1i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (8.10 - 6.79i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (6.76 + 11.7i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (0.163 - 0.283i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-9.60 - 8.06i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (1.18 + 0.994i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-1.89 + 3.28i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-3.65 + 1.33i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64935972697113534681436723497, −10.33118059729164497597941723603, −9.488310591261553953475956209024, −8.396491260414410935009462412237, −7.47967008440385745968026209833, −6.55395570912438910827992279360, −5.89938642267690145183335393344, −4.42246261116115003567997277719, −3.00748067489457519661814878869, −1.88344327181844075184732071251, 1.99239890228082090450145361907, 2.98565728353735754904141128032, 4.42752731918502751554233371761, 5.25446407535737281669262475341, 6.19469640954300286742955724894, 7.76698057383685053961081668207, 9.043005179862745028072128300800, 9.443530494761102369891498847504, 10.46086098177633734999498325833, 11.12667756842601536067720430422

Graph of the $Z$-function along the critical line