Properties

Label 2-378-27.25-c1-0-3
Degree $2$
Conductor $378$
Sign $0.993 - 0.116i$
Analytic cond. $3.01834$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 − 0.984i)2-s + (−1.70 − 0.300i)3-s + (−0.939 − 0.342i)4-s + (−1.03 + 0.866i)5-s + (−0.592 + 1.62i)6-s + (−0.939 + 0.342i)7-s + (−0.5 + 0.866i)8-s + (2.81 + 1.02i)9-s + (0.673 + 1.16i)10-s + (3.64 + 3.05i)11-s + (1.49 + 0.866i)12-s + (0.266 + 1.50i)13-s + (0.173 + 0.984i)14-s + (2.02 − 1.16i)15-s + (0.766 + 0.642i)16-s + (−1.11 − 1.92i)17-s + ⋯
L(s)  = 1  + (0.122 − 0.696i)2-s + (−0.984 − 0.173i)3-s + (−0.469 − 0.171i)4-s + (−0.461 + 0.387i)5-s + (−0.241 + 0.664i)6-s + (−0.355 + 0.129i)7-s + (−0.176 + 0.306i)8-s + (0.939 + 0.342i)9-s + (0.213 + 0.368i)10-s + (1.09 + 0.922i)11-s + (0.433 + 0.249i)12-s + (0.0737 + 0.418i)13-s + (0.0464 + 0.263i)14-s + (0.521 − 0.301i)15-s + (0.191 + 0.160i)16-s + (−0.270 − 0.467i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.116i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $0.993 - 0.116i$
Analytic conductor: \(3.01834\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (295, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1/2),\ 0.993 - 0.116i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.871721 + 0.0507719i\)
\(L(\frac12)\) \(\approx\) \(0.871721 + 0.0507719i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 + 0.984i)T \)
3 \( 1 + (1.70 + 0.300i)T \)
7 \( 1 + (0.939 - 0.342i)T \)
good5 \( 1 + (1.03 - 0.866i)T + (0.868 - 4.92i)T^{2} \)
11 \( 1 + (-3.64 - 3.05i)T + (1.91 + 10.8i)T^{2} \)
13 \( 1 + (-0.266 - 1.50i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (1.11 + 1.92i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.79 + 4.84i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-7.57 - 2.75i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (1.85 - 10.5i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (-1.37 - 0.502i)T + (23.7 + 19.9i)T^{2} \)
37 \( 1 + (-0.815 - 1.41i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.75 - 9.97i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (6.70 + 5.63i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (-8.35 + 3.03i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 - 1.32T + 53T^{2} \)
59 \( 1 + (7.16 - 6.01i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-3.08 + 1.12i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (0.470 + 2.66i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (2.10 + 3.64i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (4.54 - 7.87i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-0.556 + 3.15i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (2.22 - 12.6i)T + (-77.9 - 28.3i)T^{2} \)
89 \( 1 + (0.779 - 1.35i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (9.91 + 8.31i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42910366964784561219462478145, −10.82561694135699951935131934885, −9.624311882683919499542113070624, −9.028039381733479485965923485953, −7.10996443877423341199700773964, −6.89997068848061516252607600840, −5.33058048778540071897575458397, −4.44483479195359510960871454432, −3.16563681769817311945100985196, −1.36587140397128264326838243014, 0.75551355626911789136133263968, 3.63334277362969873672709770248, 4.48056608614308113383340474784, 5.77420506695725453505405418021, 6.33094094610710624952731851290, 7.44727101291300540171248202030, 8.496728257358985066141139419258, 9.454610451456002526289722313124, 10.47502985172644888923077277655, 11.47620145947200787826983742815

Graph of the $Z$-function along the critical line