Properties

Label 2-3762-1.1-c1-0-49
Degree $2$
Conductor $3762$
Sign $-1$
Analytic cond. $30.0397$
Root an. cond. $5.48085$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 0.391·5-s − 1.71·7-s − 8-s − 0.391·10-s + 11-s + 3.71·13-s + 1.71·14-s + 16-s − 5.43·17-s − 19-s + 0.391·20-s − 22-s + 3.43·23-s − 4.84·25-s − 3.71·26-s − 1.71·28-s + 3.82·29-s − 3.06·31-s − 32-s + 5.43·34-s − 0.672·35-s − 4.65·37-s + 38-s − 0.391·40-s − 1.06·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.175·5-s − 0.649·7-s − 0.353·8-s − 0.123·10-s + 0.301·11-s + 1.03·13-s + 0.459·14-s + 0.250·16-s − 1.31·17-s − 0.229·19-s + 0.0875·20-s − 0.213·22-s + 0.716·23-s − 0.969·25-s − 0.729·26-s − 0.324·28-s + 0.710·29-s − 0.550·31-s − 0.176·32-s + 0.932·34-s − 0.113·35-s − 0.765·37-s + 0.162·38-s − 0.0618·40-s − 0.166·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3762\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.0397\)
Root analytic conductor: \(5.48085\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3762,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 0.391T + 5T^{2} \)
7 \( 1 + 1.71T + 7T^{2} \)
13 \( 1 - 3.71T + 13T^{2} \)
17 \( 1 + 5.43T + 17T^{2} \)
23 \( 1 - 3.43T + 23T^{2} \)
29 \( 1 - 3.82T + 29T^{2} \)
31 \( 1 + 3.06T + 31T^{2} \)
37 \( 1 + 4.65T + 37T^{2} \)
41 \( 1 + 1.06T + 41T^{2} \)
43 \( 1 + 3.73T + 43T^{2} \)
47 \( 1 - 8.22T + 47T^{2} \)
53 \( 1 - 1.21T + 53T^{2} \)
59 \( 1 + 12.4T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 1.71T + 67T^{2} \)
71 \( 1 + 1.04T + 71T^{2} \)
73 \( 1 - 13.6T + 73T^{2} \)
79 \( 1 - 13.0T + 79T^{2} \)
83 \( 1 + 8.51T + 83T^{2} \)
89 \( 1 + 17.6T + 89T^{2} \)
97 \( 1 + 4.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.352634935465310717324243718451, −7.40544782079716733687653102695, −6.57748010026919893675054138239, −6.26425868437162378201018781219, −5.25640374435267706145709799033, −4.15265529954075732588312975502, −3.36205253868055070694629869591, −2.35041655757658039750242182638, −1.35540547323113083649514877487, 0, 1.35540547323113083649514877487, 2.35041655757658039750242182638, 3.36205253868055070694629869591, 4.15265529954075732588312975502, 5.25640374435267706145709799033, 6.26425868437162378201018781219, 6.57748010026919893675054138239, 7.40544782079716733687653102695, 8.352634935465310717324243718451

Graph of the $Z$-function along the critical line