Properties

Label 8-3750e4-1.1-c1e4-0-1
Degree $8$
Conductor $1.978\times 10^{14}$
Sign $1$
Analytic cond. $803958.$
Root an. cond. $5.47210$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·9-s − 12·11-s + 3·16-s + 20·19-s + 10·29-s − 12·31-s + 4·36-s − 2·41-s + 24·44-s + 20·49-s − 22·61-s − 4·64-s − 12·71-s − 40·76-s + 3·81-s − 10·89-s + 24·99-s + 38·101-s + 30·109-s − 20·116-s + 56·121-s + 24·124-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 4-s − 2/3·9-s − 3.61·11-s + 3/4·16-s + 4.58·19-s + 1.85·29-s − 2.15·31-s + 2/3·36-s − 0.312·41-s + 3.61·44-s + 20/7·49-s − 2.81·61-s − 1/2·64-s − 1.42·71-s − 4.58·76-s + 1/3·81-s − 1.05·89-s + 2.41·99-s + 3.78·101-s + 2.87·109-s − 1.85·116-s + 5.09·121-s + 2.15·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{16}\)
Sign: $1$
Analytic conductor: \(803958.\)
Root analytic conductor: \(5.47210\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{16} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3670052999\)
\(L(\frac12)\) \(\approx\) \(0.3670052999\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
11$C_4$ \( ( 1 + 6 T + 26 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 25 T^{2} + 393 T^{4} - 25 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 5 T^{2} - 327 T^{4} - 5 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 10 T + 58 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 - 5 T + 63 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 6 T + 26 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 65 T^{2} + 2433 T^{4} - 65 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + T + 51 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 160 T^{2} + 10078 T^{4} - 160 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 80 T^{2} + 5038 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 5 T^{2} + 4713 T^{4} - 5 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 11 T + 141 T^{2} + 11 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 160 T^{2} + 13758 T^{4} - 160 p^{2} T^{6} + p^{4} T^{8} \)
71$C_4$ \( ( 1 + 6 T + 26 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 185 T^{2} + 17313 T^{4} - 185 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 5 T + 183 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 145 T^{2} + 19113 T^{4} - 145 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.80491862142006246606089942477, −5.78810828557661930102692055087, −5.51475481878090502954690199630, −5.48657873112552013723314203024, −5.30077673570284776819161951684, −5.01852125174198936136235690463, −4.87991577982101179458425478992, −4.63877189670983758577076197219, −4.63525716303569165153779198291, −4.35814978071044102626754047313, −3.86669965986909404876031540522, −3.77096261010516329178413532741, −3.32984324459851185681060694895, −3.23898963569154067218533385062, −3.16654381156014955891190649040, −2.93167212449551053568073219845, −2.74356135971675945942037262791, −2.52187506163899983044044301425, −2.23496479814391807421934615549, −1.77304568504698468588190871500, −1.70728067262587050533389121658, −1.08991769812352152234029935817, −0.815296902955333526087965922843, −0.71628230225356980410554219470, −0.11521953712764448075823316956, 0.11521953712764448075823316956, 0.71628230225356980410554219470, 0.815296902955333526087965922843, 1.08991769812352152234029935817, 1.70728067262587050533389121658, 1.77304568504698468588190871500, 2.23496479814391807421934615549, 2.52187506163899983044044301425, 2.74356135971675945942037262791, 2.93167212449551053568073219845, 3.16654381156014955891190649040, 3.23898963569154067218533385062, 3.32984324459851185681060694895, 3.77096261010516329178413532741, 3.86669965986909404876031540522, 4.35814978071044102626754047313, 4.63525716303569165153779198291, 4.63877189670983758577076197219, 4.87991577982101179458425478992, 5.01852125174198936136235690463, 5.30077673570284776819161951684, 5.48657873112552013723314203024, 5.51475481878090502954690199630, 5.78810828557661930102692055087, 5.80491862142006246606089942477

Graph of the $Z$-function along the critical line