Properties

Label 8-375e4-1.1-c1e4-0-0
Degree $8$
Conductor $19775390625$
Sign $1$
Analytic cond. $80.3958$
Root an. cond. $1.73043$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·9-s − 16·11-s + 4·16-s + 4·19-s + 8·29-s + 10·31-s − 2·36-s − 30·41-s − 16·44-s + 13·49-s + 6·59-s + 2·61-s + 11·64-s + 18·71-s + 4·76-s − 20·79-s + 3·81-s + 4·89-s + 32·99-s + 24·101-s − 36·109-s + 8·116-s + 126·121-s + 10·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 1/2·4-s − 2/3·9-s − 4.82·11-s + 16-s + 0.917·19-s + 1.48·29-s + 1.79·31-s − 1/3·36-s − 4.68·41-s − 2.41·44-s + 13/7·49-s + 0.781·59-s + 0.256·61-s + 11/8·64-s + 2.13·71-s + 0.458·76-s − 2.25·79-s + 1/3·81-s + 0.423·89-s + 3.21·99-s + 2.38·101-s − 3.44·109-s + 0.742·116-s + 11.4·121-s + 0.898·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{12}\)
Sign: $1$
Analytic conductor: \(80.3958\)
Root analytic conductor: \(1.73043\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{12} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.9814483267\)
\(L(\frac12)\) \(\approx\) \(0.9814483267\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
good2$C_2^3$ \( 1 - T^{2} - 3 T^{4} - p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 - 13 T^{2} + 109 T^{4} - 13 p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 + 8 T + 3 p T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 17 T^{2} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 25 T^{2} + 633 T^{4} - 25 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 - 4 T + 57 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 5 T + 37 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 49 T^{2} + p^{2} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 + 15 T + 127 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 145 T^{2} + 8893 T^{4} - 145 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 70 T^{2} + 3643 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 197 T^{2} + 15289 T^{4} - 197 p^{2} T^{6} + p^{4} T^{8} \)
59$C_4$ \( ( 1 - 3 T - 31 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_4$ \( ( 1 - T + 91 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 9 T + 151 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 + 43 T^{2} + 4089 T^{4} + 43 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 10 T + 178 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 209 T^{2} + 24637 T^{4} - 209 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 2 T + 159 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 185 T^{2} + 27273 T^{4} - 185 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.184914313639160075781557582664, −8.048992203311119554993948482167, −8.033489904254586694243826413676, −7.62510335338059115906055693201, −7.17129867272584766659044160619, −7.07345285312415941972646366686, −6.78093385471798345643467189250, −6.64298613900243841340829774688, −6.13840970801601055849563194524, −5.83702680614575928148881721426, −5.44793070893091285586227159966, −5.34436098192352677636921996920, −5.34271061012013849433052554493, −4.98426828630885020189546190149, −4.74089049241485198751686215205, −4.39796620724941943687918519115, −3.87074953732194923329507354264, −3.23434246316775919176751009167, −3.19080851116727452408226245903, −3.00104358916607971518895108346, −2.60651805165480462728901073425, −2.23511147531799918772124412750, −2.10509816619017424405030812614, −1.14484904531939549970433299779, −0.41033307837234712293814510122, 0.41033307837234712293814510122, 1.14484904531939549970433299779, 2.10509816619017424405030812614, 2.23511147531799918772124412750, 2.60651805165480462728901073425, 3.00104358916607971518895108346, 3.19080851116727452408226245903, 3.23434246316775919176751009167, 3.87074953732194923329507354264, 4.39796620724941943687918519115, 4.74089049241485198751686215205, 4.98426828630885020189546190149, 5.34271061012013849433052554493, 5.34436098192352677636921996920, 5.44793070893091285586227159966, 5.83702680614575928148881721426, 6.13840970801601055849563194524, 6.64298613900243841340829774688, 6.78093385471798345643467189250, 7.07345285312415941972646366686, 7.17129867272584766659044160619, 7.62510335338059115906055693201, 8.033489904254586694243826413676, 8.048992203311119554993948482167, 8.184914313639160075781557582664

Graph of the $Z$-function along the critical line