Properties

Label 2-3744-104.77-c1-0-64
Degree $2$
Conductor $3744$
Sign $-0.980 + 0.196i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3i·7-s − 2·11-s + (3 + 2i)13-s − 3·17-s − 6·23-s − 4·25-s − 6i·29-s − 3i·35-s − 3·37-s + 10i·41-s − 9i·43-s − 7i·47-s − 2·49-s + 6i·53-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.13i·7-s − 0.603·11-s + (0.832 + 0.554i)13-s − 0.727·17-s − 1.25·23-s − 0.800·25-s − 1.11i·29-s − 0.507i·35-s − 0.493·37-s + 1.56i·41-s − 1.37i·43-s − 1.02i·47-s − 0.285·49-s + 0.824i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.980 + 0.196i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (1585, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.980 + 0.196i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5484268275\)
\(L(\frac12)\) \(\approx\) \(0.5484268275\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + (-3 - 2i)T \)
good5 \( 1 - T + 5T^{2} \)
7 \( 1 + 3iT - 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 + 6iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 + 3T + 37T^{2} \)
41 \( 1 - 10iT - 41T^{2} \)
43 \( 1 + 9iT - 43T^{2} \)
47 \( 1 + 7iT - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 + 10T + 59T^{2} \)
61 \( 1 + 10iT - 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 + 5iT - 71T^{2} \)
73 \( 1 - 6iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 16T + 83T^{2} \)
89 \( 1 + 4iT - 89T^{2} \)
97 \( 1 - 18iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.013296097028327413479950037862, −7.57128160868109870392226098742, −6.52346341183531242304633628487, −6.14448099354391109716302156388, −5.11433187728673941286343198260, −4.19373498968219773073118436251, −3.69055430505702448338018136457, −2.40029102597249136560902495368, −1.53107726336924127940583740583, −0.14748134850072264780085898210, 1.59996790756401227109921359506, 2.42769242749467014929904873173, 3.27840343935163274625854080462, 4.32113556113918426629979024348, 5.32218129745857483059681628483, 5.84981594954039124744514809038, 6.41158513193436131253351348246, 7.50517299867787095471162236233, 8.211010742775666279718371238507, 8.869512354462601399654551415056

Graph of the $Z$-function along the critical line