| L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.658 − 0.176i)3-s + (0.499 + 0.866i)4-s + (−1.32 + 1.80i)5-s + (−0.482 − 0.482i)6-s + (−4.10 − 1.09i)7-s + 0.999i·8-s + (−2.19 − 1.26i)9-s + (−2.04 + 0.901i)10-s + 2.14i·11-s + (−0.176 − 0.658i)12-s + (−4.46 + 2.57i)13-s + (−3.00 − 3.00i)14-s + (1.18 − 0.955i)15-s + (−0.5 + 0.866i)16-s + (1.60 − 2.78i)17-s + ⋯ |
| L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.380 − 0.101i)3-s + (0.249 + 0.433i)4-s + (−0.590 + 0.806i)5-s + (−0.196 − 0.196i)6-s + (−1.55 − 0.415i)7-s + 0.353i·8-s + (−0.731 − 0.422i)9-s + (−0.647 + 0.285i)10-s + 0.646i·11-s + (−0.0509 − 0.190i)12-s + (−1.23 + 0.714i)13-s + (−0.802 − 0.802i)14-s + (0.307 − 0.246i)15-s + (−0.125 + 0.216i)16-s + (0.389 − 0.675i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0348199 + 0.533415i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0348199 + 0.533415i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (1.32 - 1.80i)T \) |
| 37 | \( 1 + (5.38 + 2.82i)T \) |
| good | 3 | \( 1 + (0.658 + 0.176i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (4.10 + 1.09i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 - 2.14iT - 11T^{2} \) |
| 13 | \( 1 + (4.46 - 2.57i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.60 + 2.78i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.69 - 1.79i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 2.23iT - 23T^{2} \) |
| 29 | \( 1 + (0.485 + 0.485i)T + 29iT^{2} \) |
| 31 | \( 1 + (5.21 - 5.21i)T - 31iT^{2} \) |
| 41 | \( 1 + (-0.247 + 0.142i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 12.4iT - 43T^{2} \) |
| 47 | \( 1 + (-2.42 + 2.42i)T - 47iT^{2} \) |
| 53 | \( 1 + (7.23 - 1.93i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.59 - 5.94i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-6.45 - 1.72i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-0.635 + 2.37i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (6.41 + 11.1i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-9.49 + 9.49i)T - 73iT^{2} \) |
| 79 | \( 1 + (0.585 + 0.156i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-3.55 + 0.951i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (5.82 - 1.56i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + 14.2T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11913268997779892286442525395, −11.16156735666603114216679021750, −9.944153508693979606386750491295, −9.308575083780005399283178249475, −7.49860268824330631983994812239, −7.08985919962024621273258644263, −6.22533026895216435055689647762, −5.06777368658117657181429314232, −3.61725659196839512308461759193, −2.90792241051043597721056933134,
0.28960832444079380046975925201, 2.77401006575144468690075519326, 3.69745352686632564407848361227, 5.28317797973167673094146574787, 5.63100558738777770467806311962, 7.00870113841013135787335870964, 8.201333069803457188207552829265, 9.305716508973647599370179373281, 10.09369940531019084497670562290, 11.18767706190992762612763645583