Properties

Label 16-370e8-1.1-c1e8-0-0
Degree $16$
Conductor $3.512\times 10^{20}$
Sign $1$
Analytic cond. $5805.37$
Root an. cond. $1.71885$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s − 4·9-s + 8·11-s + 16-s + 4·19-s − 25-s − 8·31-s − 8·36-s − 4·41-s + 16·44-s − 4·49-s + 24·59-s − 8·61-s − 2·64-s + 44·71-s + 8·76-s − 4·79-s + 22·81-s + 20·89-s − 32·99-s − 2·100-s − 96·101-s − 24·109-s − 8·121-s − 16·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 4-s − 4/3·9-s + 2.41·11-s + 1/4·16-s + 0.917·19-s − 1/5·25-s − 1.43·31-s − 4/3·36-s − 0.624·41-s + 2.41·44-s − 4/7·49-s + 3.12·59-s − 1.02·61-s − 1/4·64-s + 5.22·71-s + 0.917·76-s − 0.450·79-s + 22/9·81-s + 2.11·89-s − 3.21·99-s − 1/5·100-s − 9.55·101-s − 2.29·109-s − 0.727·121-s − 1.43·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 37^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 37^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 5^{8} \cdot 37^{8}\)
Sign: $1$
Analytic conductor: \(5805.37\)
Root analytic conductor: \(1.71885\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 5^{8} \cdot 37^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.312374252\)
\(L(\frac12)\) \(\approx\) \(2.312374252\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - T^{2} + T^{4} )^{2} \)
5 \( 1 + T^{2} - 24 T^{4} + p^{2} T^{6} + p^{4} T^{8} \)
37 \( ( 1 + 47 T^{2} + p^{2} T^{4} )^{2} \)
good3 \( ( 1 + 2 T^{2} - 5 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
7 \( 1 + 4 T^{2} - 6 p T^{4} - 160 T^{6} + 179 T^{8} - 160 p^{2} T^{10} - 6 p^{5} T^{12} + 4 p^{6} T^{14} + p^{8} T^{16} \)
11 \( ( 1 - 2 T + 12 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{4} \)
13 \( ( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2}( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
17 \( 1 + 38 T^{2} + 681 T^{4} + 7030 T^{6} + 81332 T^{8} + 7030 p^{2} T^{10} + 681 p^{4} T^{12} + 38 p^{6} T^{14} + p^{8} T^{16} \)
19 \( ( 1 - 2 T - 24 T^{2} + 20 T^{3} + 347 T^{4} + 20 p T^{5} - 24 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
23 \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{4} \)
29 \( ( 1 + 47 T^{2} + p^{2} T^{4} )^{4} \)
31 \( ( 1 + 2 T + 52 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{4} \)
41 \( ( 1 + 2 T - 35 T^{2} - 86 T^{3} - 324 T^{4} - 86 p T^{5} - 35 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
43 \( ( 1 + 28 T^{2} + 3498 T^{4} + 28 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
47 \( ( 1 - 164 T^{2} + 11098 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( 1 + 116 T^{2} + 5178 T^{4} + 308560 T^{6} + 22836899 T^{8} + 308560 p^{2} T^{10} + 5178 p^{4} T^{12} + 116 p^{6} T^{14} + p^{8} T^{16} \)
59 \( ( 1 - 12 T + 34 T^{2} + 96 T^{3} + 123 T^{4} + 96 p T^{5} + 34 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
61 \( ( 1 + 4 T - 11 T^{2} - 380 T^{3} - 3968 T^{4} - 380 p T^{5} - 11 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
67 \( 1 + 196 T^{2} + 20934 T^{4} + 1666784 T^{6} + 113019779 T^{8} + 1666784 p^{2} T^{10} + 20934 p^{4} T^{12} + 196 p^{6} T^{14} + p^{8} T^{16} \)
71 \( ( 1 - 22 T + 232 T^{2} - 2420 T^{3} + 24099 T^{4} - 2420 p T^{5} + 232 p^{2} T^{6} - 22 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 172 T^{2} + 15238 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + 2 T - 56 T^{2} - 196 T^{3} - 2957 T^{4} - 196 p T^{5} - 56 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
83 \( ( 1 + 122 T^{2} + 7995 T^{4} + 122 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 - 10 T - 59 T^{2} + 190 T^{3} + 8460 T^{4} + 190 p T^{5} - 59 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
97 \( ( 1 - 17 T + p T^{2} )^{4}( 1 + 17 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.19313195971648161798496513629, −4.96860297197689377159560756307, −4.89849127946528970334212524799, −4.60623432720673260663510940503, −4.51497283382260931273053777047, −4.20150589882799511009921603555, −4.14559257955724824228646713403, −3.90661864910432203478654490584, −3.84610977660767159853472137906, −3.61636346636067079982503763048, −3.58839257132454997498050742682, −3.45535367933090608461135603418, −3.33565392819426832011773052291, −3.11902955785844298031534569268, −2.62840298641394066005681522551, −2.58039864961490559864168420799, −2.52054931702342127146291312207, −2.49877187507108648673795629662, −2.01058765060270737050008591613, −1.97308957337219426172340879660, −1.66496182577626167655062952994, −1.22325277491720704754375292076, −1.21559847215003377504620202141, −1.06230187051445519253862898191, −0.29182862757285754836733486793, 0.29182862757285754836733486793, 1.06230187051445519253862898191, 1.21559847215003377504620202141, 1.22325277491720704754375292076, 1.66496182577626167655062952994, 1.97308957337219426172340879660, 2.01058765060270737050008591613, 2.49877187507108648673795629662, 2.52054931702342127146291312207, 2.58039864961490559864168420799, 2.62840298641394066005681522551, 3.11902955785844298031534569268, 3.33565392819426832011773052291, 3.45535367933090608461135603418, 3.58839257132454997498050742682, 3.61636346636067079982503763048, 3.84610977660767159853472137906, 3.90661864910432203478654490584, 4.14559257955724824228646713403, 4.20150589882799511009921603555, 4.51497283382260931273053777047, 4.60623432720673260663510940503, 4.89849127946528970334212524799, 4.96860297197689377159560756307, 5.19313195971648161798496513629

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.