Properties

Label 8-370e4-1.1-c1e4-0-16
Degree $8$
Conductor $18741610000$
Sign $1$
Analytic cond. $76.1930$
Root an. cond. $1.71885$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 2·7-s + 3·9-s + 12·11-s + 18·13-s + 6·17-s − 12·19-s + 25-s + 2·28-s + 3·36-s − 2·37-s + 2·41-s + 12·44-s − 20·47-s + 12·49-s + 18·52-s − 6·53-s − 30·59-s − 12·61-s + 6·63-s − 64-s − 16·67-s + 6·68-s − 4·71-s + 12·73-s − 12·76-s + 24·77-s + ⋯
L(s)  = 1  + 1/2·4-s + 0.755·7-s + 9-s + 3.61·11-s + 4.99·13-s + 1.45·17-s − 2.75·19-s + 1/5·25-s + 0.377·28-s + 1/2·36-s − 0.328·37-s + 0.312·41-s + 1.80·44-s − 2.91·47-s + 12/7·49-s + 2.49·52-s − 0.824·53-s − 3.90·59-s − 1.53·61-s + 0.755·63-s − 1/8·64-s − 1.95·67-s + 0.727·68-s − 0.474·71-s + 1.40·73-s − 1.37·76-s + 2.73·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(76.1930\)
Root analytic conductor: \(1.71885\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.496216856\)
\(L(\frac12)\) \(\approx\) \(5.496216856\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2^2$ \( 1 - T^{2} + T^{4} \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
good3$C_2$$\times$$C_2^2$ \( ( 1 - p T^{2} )^{2}( 1 + p T^{2} + p^{2} T^{4} ) \)
7$D_4\times C_2$ \( 1 - 2 T - 8 T^{2} + 4 T^{3} + 67 T^{4} + 4 p T^{5} - 8 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 - 6 T + 28 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2$$\times$$C_2^2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} ) \)
17$D_4\times C_2$ \( 1 - 6 T + 48 T^{2} - 216 T^{3} + 1211 T^{4} - 216 p T^{5} + 48 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 12 T + 82 T^{2} + 408 T^{3} + 1707 T^{4} + 408 p T^{5} + 82 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 68 T^{2} + 2106 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 12 T^{2} + 950 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 26 T^{2} + 1899 T^{4} - 26 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 2 T - 67 T^{2} + 22 T^{3} + 3196 T^{4} + 22 p T^{5} - 67 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 98 T^{2} + 4899 T^{4} - 98 p^{2} T^{6} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 + 10 T + 116 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 + 6 T + 29 T^{2} - 594 T^{3} - 4668 T^{4} - 594 p T^{5} + 29 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 + 30 T + 484 T^{2} + 5520 T^{3} + 48075 T^{4} + 5520 p T^{5} + 484 p^{2} T^{6} + 30 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 12 T + 166 T^{2} + 1416 T^{3} + 13131 T^{4} + 1416 p T^{5} + 166 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2^2$ \( ( 1 + 8 T - 3 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 + 4 T - 22 T^{2} - 416 T^{3} - 4733 T^{4} - 416 p T^{5} - 22 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 - 6 T + 80 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^3$ \( 1 + 14 T^{2} - 6045 T^{4} + 14 p^{2} T^{6} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 + 24 T + 278 T^{2} + 3168 T^{3} + 34107 T^{4} + 3168 p T^{5} + 278 p^{2} T^{6} + 24 p^{3} T^{7} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 + 24 T + 414 T^{2} + 5328 T^{3} + 58451 T^{4} + 5328 p T^{5} + 414 p^{2} T^{6} + 24 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 140 T^{2} + 16806 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.388129070485076458517396808410, −8.208913062469036266117288489359, −7.68560742990758757141084451408, −7.47451310520575622992258442464, −7.46807023511644957098392711735, −6.68043874320124796170149601140, −6.54775307480905646865314999165, −6.40357825123527458600253275971, −6.40015526654556680904284248397, −6.19442822768259124282430017006, −5.93794620217405966245438215087, −5.60661376064671103932181287861, −5.18319793104340302800978732786, −4.54904320935798573400354869141, −4.38959869367523672375465893895, −4.20813692592435040024906994706, −3.95363826294617695564859066828, −3.73085993349248452966674878099, −3.35443218889112282183248860207, −3.28551888779052966624214230986, −2.61898925174842273262566120877, −1.52340179355847969659158163645, −1.45396338373658972504584153833, −1.44104629430829639453692161371, −1.41888258846302516276256559244, 1.41888258846302516276256559244, 1.44104629430829639453692161371, 1.45396338373658972504584153833, 1.52340179355847969659158163645, 2.61898925174842273262566120877, 3.28551888779052966624214230986, 3.35443218889112282183248860207, 3.73085993349248452966674878099, 3.95363826294617695564859066828, 4.20813692592435040024906994706, 4.38959869367523672375465893895, 4.54904320935798573400354869141, 5.18319793104340302800978732786, 5.60661376064671103932181287861, 5.93794620217405966245438215087, 6.19442822768259124282430017006, 6.40015526654556680904284248397, 6.40357825123527458600253275971, 6.54775307480905646865314999165, 6.68043874320124796170149601140, 7.46807023511644957098392711735, 7.47451310520575622992258442464, 7.68560742990758757141084451408, 8.208913062469036266117288489359, 8.388129070485076458517396808410

Graph of the $Z$-function along the critical line