Properties

Label 8-370e4-1.1-c1e4-0-2
Degree $8$
Conductor $18741610000$
Sign $1$
Analytic cond. $76.1930$
Root an. cond. $1.71885$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·3-s + 4-s − 2·5-s − 4·6-s + 2·8-s + 7·9-s + 4·10-s − 8·11-s + 2·12-s − 2·13-s − 4·15-s − 4·16-s − 4·17-s − 14·18-s + 4·19-s − 2·20-s + 16·22-s − 8·23-s + 4·24-s + 25-s + 4·26-s + 22·27-s − 8·29-s + 8·30-s + 20·31-s + 2·32-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 1/2·4-s − 0.894·5-s − 1.63·6-s + 0.707·8-s + 7/3·9-s + 1.26·10-s − 2.41·11-s + 0.577·12-s − 0.554·13-s − 1.03·15-s − 16-s − 0.970·17-s − 3.29·18-s + 0.917·19-s − 0.447·20-s + 3.41·22-s − 1.66·23-s + 0.816·24-s + 1/5·25-s + 0.784·26-s + 4.23·27-s − 1.48·29-s + 1.46·30-s + 3.59·31-s + 0.353·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(76.1930\)
Root analytic conductor: \(1.71885\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7767658721\)
\(L(\frac12)\) \(\approx\) \(0.7767658721\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
5$C_2$ \( ( 1 + T + T^{2} )^{2} \)
37$C_2^2$ \( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
good3$C_2^2$ \( ( 1 - T - 2 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
7$C_2^2$$\times$$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )( 1 + 11 T^{2} + p^{2} T^{4} ) \)
11$D_{4}$ \( ( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 + 2 T - 11 T^{2} - 22 T^{3} + 4 T^{4} - 22 p T^{5} - 11 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 + 4 T - 10 T^{2} - 32 T^{3} + 115 T^{4} - 32 p T^{5} - 10 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 + 4 T + 38 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
31$D_{4}$ \( ( 1 - 10 T + 75 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2$$\times$$C_2^2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + 59 T^{2} + 10 p T^{3} + p^{2} T^{4} ) \)
43$D_{4}$ \( ( 1 + 6 T + 47 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 82 T^{2} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 18 T + 149 T^{2} - 1242 T^{3} + 10644 T^{4} - 1242 p T^{5} + 149 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 - 4 T - 94 T^{2} + 32 T^{3} + 7675 T^{4} + 32 p T^{5} - 94 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 4 T - 62 T^{2} - 176 T^{3} + 1387 T^{4} - 176 p T^{5} - 62 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 16 T + 106 T^{2} + 256 T^{3} + 859 T^{4} + 256 p T^{5} + 106 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 16 T + 98 T^{2} + 256 T^{3} + 1747 T^{4} + 256 p T^{5} + 98 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 - 12 T + 170 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 16 T + 82 T^{2} - 256 T^{3} + 3811 T^{4} - 256 p T^{5} + 82 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 8 T + 74 T^{2} + 1408 T^{3} - 12101 T^{4} + 1408 p T^{5} + 74 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 2 T - 85 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.240798109709331312897342160917, −8.089708151240703069566870435198, −7.928213147374756086557247689859, −7.75386058731735483629185610696, −7.46353325770296997942428498316, −7.12647935085304214078127694861, −6.87336783156779508342467461918, −6.85308303657613872306756946993, −6.54955104713719748138276992824, −5.88964673849958571904757387525, −5.81051345741485134007242896699, −5.31389012275215968121546055471, −4.99142644088080065709448021821, −4.75807315389415877424563563496, −4.51313292060716198894049249642, −4.27837659940875134675997898876, −3.92684842738347610951464411642, −3.73218444701199068956290601664, −3.05640747238376356239948802085, −2.80643714367463837841610265120, −2.57070006711520664160635492756, −2.21417347899980003334935144300, −1.73309535914685164203363363044, −1.10051739560853361833487433460, −0.48282261035743114442672166969, 0.48282261035743114442672166969, 1.10051739560853361833487433460, 1.73309535914685164203363363044, 2.21417347899980003334935144300, 2.57070006711520664160635492756, 2.80643714367463837841610265120, 3.05640747238376356239948802085, 3.73218444701199068956290601664, 3.92684842738347610951464411642, 4.27837659940875134675997898876, 4.51313292060716198894049249642, 4.75807315389415877424563563496, 4.99142644088080065709448021821, 5.31389012275215968121546055471, 5.81051345741485134007242896699, 5.88964673849958571904757387525, 6.54955104713719748138276992824, 6.85308303657613872306756946993, 6.87336783156779508342467461918, 7.12647935085304214078127694861, 7.46353325770296997942428498316, 7.75386058731735483629185610696, 7.928213147374756086557247689859, 8.089708151240703069566870435198, 8.240798109709331312897342160917

Graph of the $Z$-function along the critical line