Properties

Label 2-37-1.1-c7-0-14
Degree $2$
Conductor $37$
Sign $1$
Analytic cond. $11.5582$
Root an. cond. $3.39974$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15.8·2-s + 41.5·3-s + 124.·4-s + 303.·5-s + 660.·6-s + 157.·7-s − 57.6·8-s − 458.·9-s + 4.82e3·10-s + 1.05e3·11-s + 5.17e3·12-s + 1.86e3·13-s + 2.49e3·14-s + 1.26e4·15-s − 1.68e4·16-s + 6.11e3·17-s − 7.29e3·18-s − 6.36e3·19-s + 3.77e4·20-s + 6.53e3·21-s + 1.68e4·22-s − 2.64e3·23-s − 2.39e3·24-s + 1.40e4·25-s + 2.96e4·26-s − 1.09e5·27-s + 1.95e4·28-s + ⋯
L(s)  = 1  + 1.40·2-s + 0.888·3-s + 0.971·4-s + 1.08·5-s + 1.24·6-s + 0.173·7-s − 0.0398·8-s − 0.209·9-s + 1.52·10-s + 0.239·11-s + 0.863·12-s + 0.235·13-s + 0.243·14-s + 0.965·15-s − 1.02·16-s + 0.301·17-s − 0.294·18-s − 0.212·19-s + 1.05·20-s + 0.154·21-s + 0.336·22-s − 0.0453·23-s − 0.0354·24-s + 0.179·25-s + 0.330·26-s − 1.07·27-s + 0.168·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37\)
Sign: $1$
Analytic conductor: \(11.5582\)
Root analytic conductor: \(3.39974\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 37,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(5.062039513\)
\(L(\frac12)\) \(\approx\) \(5.062039513\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 + 5.06e4T \)
good2 \( 1 - 15.8T + 128T^{2} \)
3 \( 1 - 41.5T + 2.18e3T^{2} \)
5 \( 1 - 303.T + 7.81e4T^{2} \)
7 \( 1 - 157.T + 8.23e5T^{2} \)
11 \( 1 - 1.05e3T + 1.94e7T^{2} \)
13 \( 1 - 1.86e3T + 6.27e7T^{2} \)
17 \( 1 - 6.11e3T + 4.10e8T^{2} \)
19 \( 1 + 6.36e3T + 8.93e8T^{2} \)
23 \( 1 + 2.64e3T + 3.40e9T^{2} \)
29 \( 1 - 4.07e4T + 1.72e10T^{2} \)
31 \( 1 - 7.14e4T + 2.75e10T^{2} \)
41 \( 1 + 6.68e5T + 1.94e11T^{2} \)
43 \( 1 + 1.77e5T + 2.71e11T^{2} \)
47 \( 1 + 6.49e5T + 5.06e11T^{2} \)
53 \( 1 - 9.34e5T + 1.17e12T^{2} \)
59 \( 1 - 6.78e5T + 2.48e12T^{2} \)
61 \( 1 - 1.23e6T + 3.14e12T^{2} \)
67 \( 1 - 3.49e6T + 6.06e12T^{2} \)
71 \( 1 - 2.48e6T + 9.09e12T^{2} \)
73 \( 1 - 5.75e6T + 1.10e13T^{2} \)
79 \( 1 - 3.01e6T + 1.92e13T^{2} \)
83 \( 1 + 6.97e6T + 2.71e13T^{2} \)
89 \( 1 + 2.14e6T + 4.42e13T^{2} \)
97 \( 1 - 9.22e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.39581944239288910090368281302, −13.83373365446751579697501975732, −12.95814955618134506268449970480, −11.56129369399906885292666253881, −9.789089697657103552114280265792, −8.489253236460487355402932252022, −6.44970947359615171929622906129, −5.21280295136437613177734057940, −3.49739914711234879654348896596, −2.14923808116560336202324711305, 2.14923808116560336202324711305, 3.49739914711234879654348896596, 5.21280295136437613177734057940, 6.44970947359615171929622906129, 8.489253236460487355402932252022, 9.789089697657103552114280265792, 11.56129369399906885292666253881, 12.95814955618134506268449970480, 13.83373365446751579697501975732, 14.39581944239288910090368281302

Graph of the $Z$-function along the critical line