Properties

Label 2-37-1.1-c7-0-20
Degree $2$
Conductor $37$
Sign $-1$
Analytic cond. $11.5582$
Root an. cond. $3.39974$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16.2·2-s − 32.8·3-s + 134.·4-s − 220.·5-s − 533.·6-s − 808.·7-s + 111.·8-s − 1.10e3·9-s − 3.58e3·10-s + 6.07e3·11-s − 4.43e3·12-s − 1.21e4·13-s − 1.31e4·14-s + 7.26e3·15-s − 1.54e4·16-s + 1.82e4·17-s − 1.79e4·18-s − 3.51e4·19-s − 2.97e4·20-s + 2.65e4·21-s + 9.85e4·22-s + 1.02e5·23-s − 3.67e3·24-s − 2.93e4·25-s − 1.96e5·26-s + 1.08e5·27-s − 1.09e5·28-s + ⋯
L(s)  = 1  + 1.43·2-s − 0.702·3-s + 1.05·4-s − 0.790·5-s − 1.00·6-s − 0.890·7-s + 0.0771·8-s − 0.505·9-s − 1.13·10-s + 1.37·11-s − 0.740·12-s − 1.52·13-s − 1.27·14-s + 0.555·15-s − 0.943·16-s + 0.902·17-s − 0.724·18-s − 1.17·19-s − 0.832·20-s + 0.626·21-s + 1.97·22-s + 1.76·23-s − 0.0542·24-s − 0.375·25-s − 2.18·26-s + 1.05·27-s − 0.938·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37\)
Sign: $-1$
Analytic conductor: \(11.5582\)
Root analytic conductor: \(3.39974\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 37,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 - 5.06e4T \)
good2 \( 1 - 16.2T + 128T^{2} \)
3 \( 1 + 32.8T + 2.18e3T^{2} \)
5 \( 1 + 220.T + 7.81e4T^{2} \)
7 \( 1 + 808.T + 8.23e5T^{2} \)
11 \( 1 - 6.07e3T + 1.94e7T^{2} \)
13 \( 1 + 1.21e4T + 6.27e7T^{2} \)
17 \( 1 - 1.82e4T + 4.10e8T^{2} \)
19 \( 1 + 3.51e4T + 8.93e8T^{2} \)
23 \( 1 - 1.02e5T + 3.40e9T^{2} \)
29 \( 1 + 7.20e4T + 1.72e10T^{2} \)
31 \( 1 + 1.12e5T + 2.75e10T^{2} \)
41 \( 1 - 4.30e5T + 1.94e11T^{2} \)
43 \( 1 - 3.42e5T + 2.71e11T^{2} \)
47 \( 1 + 5.23e5T + 5.06e11T^{2} \)
53 \( 1 - 4.30e4T + 1.17e12T^{2} \)
59 \( 1 + 2.41e6T + 2.48e12T^{2} \)
61 \( 1 + 1.72e4T + 3.14e12T^{2} \)
67 \( 1 + 3.97e6T + 6.06e12T^{2} \)
71 \( 1 - 2.20e6T + 9.09e12T^{2} \)
73 \( 1 + 2.86e6T + 1.10e13T^{2} \)
79 \( 1 + 2.56e6T + 1.92e13T^{2} \)
83 \( 1 + 3.64e6T + 2.71e13T^{2} \)
89 \( 1 + 6.04e6T + 4.42e13T^{2} \)
97 \( 1 + 1.03e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.42474003953665764064339269098, −12.76400463625516371654643484010, −12.12896699990742610644979388322, −11.18214624243433435812405670987, −9.268834589454056107754072882971, −7.04911152480312749664785383468, −5.88671108053809855854367224707, −4.47608395601986158691521920818, −3.12953593043797293650070909570, 0, 3.12953593043797293650070909570, 4.47608395601986158691521920818, 5.88671108053809855854367224707, 7.04911152480312749664785383468, 9.268834589454056107754072882971, 11.18214624243433435812405670987, 12.12896699990742610644979388322, 12.76400463625516371654643484010, 14.42474003953665764064339269098

Graph of the $Z$-function along the critical line