Properties

Label 2-37-1.1-c5-0-6
Degree $2$
Conductor $37$
Sign $-1$
Analytic cond. $5.93420$
Root an. cond. $2.43602$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.47·2-s + 1.99·3-s + 39.8·4-s − 10.3·5-s − 16.8·6-s + 175.·7-s − 66.1·8-s − 239.·9-s + 87.9·10-s − 584.·11-s + 79.2·12-s − 668.·13-s − 1.48e3·14-s − 20.6·15-s − 713.·16-s − 439.·17-s + 2.02e3·18-s + 1.59e3·19-s − 413.·20-s + 348.·21-s + 4.95e3·22-s − 1.87e3·23-s − 131.·24-s − 3.01e3·25-s + 5.66e3·26-s − 959.·27-s + 6.97e3·28-s + ⋯
L(s)  = 1  − 1.49·2-s + 0.127·3-s + 1.24·4-s − 0.185·5-s − 0.191·6-s + 1.35·7-s − 0.365·8-s − 0.983·9-s + 0.278·10-s − 1.45·11-s + 0.158·12-s − 1.09·13-s − 2.02·14-s − 0.0237·15-s − 0.696·16-s − 0.368·17-s + 1.47·18-s + 1.01·19-s − 0.230·20-s + 0.172·21-s + 2.18·22-s − 0.738·23-s − 0.0466·24-s − 0.965·25-s + 1.64·26-s − 0.253·27-s + 1.68·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37\)
Sign: $-1$
Analytic conductor: \(5.93420\)
Root analytic conductor: \(2.43602\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 37,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 + 1.36e3T \)
good2 \( 1 + 8.47T + 32T^{2} \)
3 \( 1 - 1.99T + 243T^{2} \)
5 \( 1 + 10.3T + 3.12e3T^{2} \)
7 \( 1 - 175.T + 1.68e4T^{2} \)
11 \( 1 + 584.T + 1.61e5T^{2} \)
13 \( 1 + 668.T + 3.71e5T^{2} \)
17 \( 1 + 439.T + 1.41e6T^{2} \)
19 \( 1 - 1.59e3T + 2.47e6T^{2} \)
23 \( 1 + 1.87e3T + 6.43e6T^{2} \)
29 \( 1 + 5.47e3T + 2.05e7T^{2} \)
31 \( 1 - 1.76e3T + 2.86e7T^{2} \)
41 \( 1 + 1.47e3T + 1.15e8T^{2} \)
43 \( 1 - 1.13e3T + 1.47e8T^{2} \)
47 \( 1 + 3.26e3T + 2.29e8T^{2} \)
53 \( 1 + 2.89e4T + 4.18e8T^{2} \)
59 \( 1 - 1.77e4T + 7.14e8T^{2} \)
61 \( 1 - 4.30e4T + 8.44e8T^{2} \)
67 \( 1 + 6.42e4T + 1.35e9T^{2} \)
71 \( 1 + 9.11e3T + 1.80e9T^{2} \)
73 \( 1 - 8.14e4T + 2.07e9T^{2} \)
79 \( 1 - 5.29e4T + 3.07e9T^{2} \)
83 \( 1 - 5.39e4T + 3.93e9T^{2} \)
89 \( 1 - 1.16e5T + 5.58e9T^{2} \)
97 \( 1 + 1.19e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.02732560702204246274817737510, −13.75464022310713224392855063512, −11.76508635147675109549137081541, −10.86066286630306350699668321287, −9.588939378605829818832667682406, −8.145684904248472965429304161066, −7.64754677415056570613600658560, −5.18047566977822567525060939769, −2.19920073146592356759519880610, 0, 2.19920073146592356759519880610, 5.18047566977822567525060939769, 7.64754677415056570613600658560, 8.145684904248472965429304161066, 9.588939378605829818832667682406, 10.86066286630306350699668321287, 11.76508635147675109549137081541, 13.75464022310713224392855063512, 15.02732560702204246274817737510

Graph of the $Z$-function along the critical line