Properties

Label 2-37-37.23-c4-0-4
Degree $2$
Conductor $37$
Sign $-0.276 - 0.961i$
Analytic cond. $3.82468$
Root an. cond. $1.95568$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.66 + 6.21i)2-s + (9.47 − 5.47i)3-s + (−22.0 + 12.7i)4-s + (−4.51 + 16.8i)5-s + (49.8 + 49.8i)6-s + (18.6 + 32.2i)7-s + (−42.9 − 42.9i)8-s + (19.3 − 33.5i)9-s − 112.·10-s − 186. i·11-s + (−139. + 241. i)12-s + (21.0 − 78.5i)13-s + (−169. + 169. i)14-s + (49.3 + 184. i)15-s + (−7.86 + 13.6i)16-s + (152. − 40.7i)17-s + ⋯
L(s)  = 1  + (0.416 + 1.55i)2-s + (1.05 − 0.607i)3-s + (−1.37 + 0.795i)4-s + (−0.180 + 0.673i)5-s + (1.38 + 1.38i)6-s + (0.380 + 0.658i)7-s + (−0.671 − 0.671i)8-s + (0.238 − 0.413i)9-s − 1.12·10-s − 1.54i·11-s + (−0.966 + 1.67i)12-s + (0.124 − 0.465i)13-s + (−0.865 + 0.865i)14-s + (0.219 + 0.818i)15-s + (−0.0307 + 0.0532i)16-s + (0.526 − 0.140i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.276 - 0.961i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.276 - 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37\)
Sign: $-0.276 - 0.961i$
Analytic conductor: \(3.82468\)
Root analytic conductor: \(1.95568\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{37} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 37,\ (\ :2),\ -0.276 - 0.961i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.33985 + 1.77930i\)
\(L(\frac12)\) \(\approx\) \(1.33985 + 1.77930i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 + (287. - 1.33e3i)T \)
good2 \( 1 + (-1.66 - 6.21i)T + (-13.8 + 8i)T^{2} \)
3 \( 1 + (-9.47 + 5.47i)T + (40.5 - 70.1i)T^{2} \)
5 \( 1 + (4.51 - 16.8i)T + (-541. - 312.5i)T^{2} \)
7 \( 1 + (-18.6 - 32.2i)T + (-1.20e3 + 2.07e3i)T^{2} \)
11 \( 1 + 186. iT - 1.46e4T^{2} \)
13 \( 1 + (-21.0 + 78.5i)T + (-2.47e4 - 1.42e4i)T^{2} \)
17 \( 1 + (-152. + 40.7i)T + (7.23e4 - 4.17e4i)T^{2} \)
19 \( 1 + (-137. + 512. i)T + (-1.12e5 - 6.51e4i)T^{2} \)
23 \( 1 + (298. + 298. i)T + 2.79e5iT^{2} \)
29 \( 1 + (960. - 960. i)T - 7.07e5iT^{2} \)
31 \( 1 + (-766. + 766. i)T - 9.23e5iT^{2} \)
41 \( 1 + (-690. + 398. i)T + (1.41e6 - 2.44e6i)T^{2} \)
43 \( 1 + (1.56e3 + 1.56e3i)T + 3.41e6iT^{2} \)
47 \( 1 + 2.63e3T + 4.87e6T^{2} \)
53 \( 1 + (2.31e3 - 4.01e3i)T + (-3.94e6 - 6.83e6i)T^{2} \)
59 \( 1 + (-2.71e3 + 726. i)T + (1.04e7 - 6.05e6i)T^{2} \)
61 \( 1 + (181. + 48.7i)T + (1.19e7 + 6.92e6i)T^{2} \)
67 \( 1 + (1.19e3 - 687. i)T + (1.00e7 - 1.74e7i)T^{2} \)
71 \( 1 + (-2.15e3 - 3.72e3i)T + (-1.27e7 + 2.20e7i)T^{2} \)
73 \( 1 - 4.55e3iT - 2.83e7T^{2} \)
79 \( 1 + (244. - 914. i)T + (-3.37e7 - 1.94e7i)T^{2} \)
83 \( 1 + (3.21e3 - 5.56e3i)T + (-2.37e7 - 4.11e7i)T^{2} \)
89 \( 1 + (3.05e3 + 1.13e4i)T + (-5.43e7 + 3.13e7i)T^{2} \)
97 \( 1 + (148. + 148. i)T + 8.85e7iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.61661921391186726049102219636, −14.74851040427652551794948358421, −13.97372285306241396645024476575, −13.13577246601595208983880050211, −11.21274212405844490995181773305, −8.803169409801833790908635774992, −8.066213296311761510312998181804, −6.89784451306404704073195707209, −5.46407931817439646913105484772, −3.07242644675547410334373835860, 1.74197853732305328614206393491, 3.67960469805163755965581796127, 4.61650572425787620817486828928, 7.909899793018469880391932466601, 9.507432154492908726057613322533, 10.13782858001736367817394623126, 11.75126559307636634285833543692, 12.71811919605216229708717765854, 13.97330956907520093941754081024, 14.77512596422560286688779508580

Graph of the $Z$-function along the critical line