Properties

Label 2-37-37.3-c3-0-7
Degree $2$
Conductor $37$
Sign $0.0403 + 0.999i$
Analytic cond. $2.18307$
Root an. cond. $1.47752$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.09 − 3.69i)2-s + (1.24 − 1.04i)3-s + (−2.64 − 15.0i)4-s + (−4.06 + 11.1i)5-s − 7.80i·6-s + (6.95 + 2.53i)7-s + (−30.3 − 17.5i)8-s + (−4.23 + 24.0i)9-s + (28.6 + 49.6i)10-s + (25.0 − 43.4i)11-s + (−18.9 − 15.8i)12-s + (−55.0 + 9.71i)13-s + (30.9 − 17.8i)14-s + (6.58 + 18.0i)15-s + (−43.9 + 15.9i)16-s + (25.6 + 4.51i)17-s + ⋯
L(s)  = 1  + (1.09 − 1.30i)2-s + (0.238 − 0.200i)3-s + (−0.331 − 1.87i)4-s + (−0.363 + 0.999i)5-s − 0.531i·6-s + (0.375 + 0.136i)7-s + (−1.33 − 0.773i)8-s + (−0.156 + 0.889i)9-s + (0.906 + 1.57i)10-s + (0.687 − 1.19i)11-s + (−0.455 − 0.381i)12-s + (−1.17 + 0.207i)13-s + (0.590 − 0.340i)14-s + (0.113 + 0.311i)15-s + (−0.686 + 0.249i)16-s + (0.365 + 0.0644i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0403 + 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0403 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37\)
Sign: $0.0403 + 0.999i$
Analytic conductor: \(2.18307\)
Root analytic conductor: \(1.47752\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{37} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 37,\ (\ :3/2),\ 0.0403 + 0.999i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.51664 - 1.45669i\)
\(L(\frac12)\) \(\approx\) \(1.51664 - 1.45669i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 + (-161. + 156. i)T \)
good2 \( 1 + (-3.09 + 3.69i)T + (-1.38 - 7.87i)T^{2} \)
3 \( 1 + (-1.24 + 1.04i)T + (4.68 - 26.5i)T^{2} \)
5 \( 1 + (4.06 - 11.1i)T + (-95.7 - 80.3i)T^{2} \)
7 \( 1 + (-6.95 - 2.53i)T + (262. + 220. i)T^{2} \)
11 \( 1 + (-25.0 + 43.4i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (55.0 - 9.71i)T + (2.06e3 - 751. i)T^{2} \)
17 \( 1 + (-25.6 - 4.51i)T + (4.61e3 + 1.68e3i)T^{2} \)
19 \( 1 + (-14.9 - 17.7i)T + (-1.19e3 + 6.75e3i)T^{2} \)
23 \( 1 + (149. - 86.2i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + (223. + 129. i)T + (1.21e4 + 2.11e4i)T^{2} \)
31 \( 1 + 180. iT - 2.97e4T^{2} \)
41 \( 1 + (-66.4 - 377. i)T + (-6.47e4 + 2.35e4i)T^{2} \)
43 \( 1 + 254. iT - 7.95e4T^{2} \)
47 \( 1 + (3.64 + 6.30i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (-263. + 96.0i)T + (1.14e5 - 9.56e4i)T^{2} \)
59 \( 1 + (-264. - 727. i)T + (-1.57e5 + 1.32e5i)T^{2} \)
61 \( 1 + (-385. + 67.9i)T + (2.13e5 - 7.76e4i)T^{2} \)
67 \( 1 + (-599. - 218. i)T + (2.30e5 + 1.93e5i)T^{2} \)
71 \( 1 + (211. - 177. i)T + (6.21e4 - 3.52e5i)T^{2} \)
73 \( 1 - 711.T + 3.89e5T^{2} \)
79 \( 1 + (-222. + 610. i)T + (-3.77e5 - 3.16e5i)T^{2} \)
83 \( 1 + (92.7 - 525. i)T + (-5.37e5 - 1.95e5i)T^{2} \)
89 \( 1 + (301. + 829. i)T + (-5.40e5 + 4.53e5i)T^{2} \)
97 \( 1 + (-309. + 178. i)T + (4.56e5 - 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.83903767857552348081226942894, −14.24144713558536653740921252037, −13.27576963114491812103945044402, −11.70135568711243519846997366880, −11.22731083480443122362707123679, −9.884599712882122101972563730731, −7.72909010794453009143074320560, −5.65306066606119608655249875615, −3.80843654105025230387801254491, −2.31925386969434378862787628741, 4.06088477567343091260194570776, 5.10508795279640442187220352110, 6.85853055596279450375980927787, 8.109032245279719687332095011523, 9.520427835577477268546567982001, 12.17581139857070478444625456290, 12.58942448084247505950802654377, 14.34017440151068509221013608692, 14.82412555718043522803903537350, 15.95677635272837442365364710717

Graph of the $Z$-function along the critical line