Properties

Label 2-37-37.25-c3-0-4
Degree $2$
Conductor $37$
Sign $0.656 - 0.754i$
Analytic cond. $2.18307$
Root an. cond. $1.47752$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.20 + 1.44i)2-s + (6.02 + 5.05i)3-s + (0.774 − 4.39i)4-s + (−1.51 − 4.14i)5-s + 14.7i·6-s + (−23.8 + 8.67i)7-s + (20.3 − 11.7i)8-s + (6.04 + 34.3i)9-s + (4.15 − 7.19i)10-s + (−11.9 − 20.7i)11-s + (26.8 − 22.5i)12-s + (19.1 + 3.37i)13-s + (−41.3 − 23.8i)14-s + (11.8 − 32.6i)15-s + (7.89 + 2.87i)16-s + (−89.7 + 15.8i)17-s + ⋯
L(s)  = 1  + (0.427 + 0.509i)2-s + (1.15 + 0.972i)3-s + (0.0968 − 0.549i)4-s + (−0.135 − 0.371i)5-s + 1.00i·6-s + (−1.28 + 0.468i)7-s + (0.897 − 0.517i)8-s + (0.224 + 1.27i)9-s + (0.131 − 0.227i)10-s + (−0.328 − 0.569i)11-s + (0.646 − 0.542i)12-s + (0.408 + 0.0719i)13-s + (−0.788 − 0.455i)14-s + (0.204 − 0.561i)15-s + (0.123 + 0.0448i)16-s + (−1.28 + 0.225i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.656 - 0.754i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.656 - 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37\)
Sign: $0.656 - 0.754i$
Analytic conductor: \(2.18307\)
Root analytic conductor: \(1.47752\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{37} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 37,\ (\ :3/2),\ 0.656 - 0.754i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.76543 + 0.804100i\)
\(L(\frac12)\) \(\approx\) \(1.76543 + 0.804100i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 + (-28.3 - 223. i)T \)
good2 \( 1 + (-1.20 - 1.44i)T + (-1.38 + 7.87i)T^{2} \)
3 \( 1 + (-6.02 - 5.05i)T + (4.68 + 26.5i)T^{2} \)
5 \( 1 + (1.51 + 4.14i)T + (-95.7 + 80.3i)T^{2} \)
7 \( 1 + (23.8 - 8.67i)T + (262. - 220. i)T^{2} \)
11 \( 1 + (11.9 + 20.7i)T + (-665.5 + 1.15e3i)T^{2} \)
13 \( 1 + (-19.1 - 3.37i)T + (2.06e3 + 751. i)T^{2} \)
17 \( 1 + (89.7 - 15.8i)T + (4.61e3 - 1.68e3i)T^{2} \)
19 \( 1 + (-53.3 + 63.5i)T + (-1.19e3 - 6.75e3i)T^{2} \)
23 \( 1 + (-93.7 - 54.1i)T + (6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + (143. - 82.6i)T + (1.21e4 - 2.11e4i)T^{2} \)
31 \( 1 - 269. iT - 2.97e4T^{2} \)
41 \( 1 + (77.6 - 440. i)T + (-6.47e4 - 2.35e4i)T^{2} \)
43 \( 1 + 352. iT - 7.95e4T^{2} \)
47 \( 1 + (-72.7 + 126. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (333. + 121. i)T + (1.14e5 + 9.56e4i)T^{2} \)
59 \( 1 + (79.6 - 218. i)T + (-1.57e5 - 1.32e5i)T^{2} \)
61 \( 1 + (362. + 63.8i)T + (2.13e5 + 7.76e4i)T^{2} \)
67 \( 1 + (-788. + 286. i)T + (2.30e5 - 1.93e5i)T^{2} \)
71 \( 1 + (124. + 104. i)T + (6.21e4 + 3.52e5i)T^{2} \)
73 \( 1 - 1.18e3T + 3.89e5T^{2} \)
79 \( 1 + (112. + 307. i)T + (-3.77e5 + 3.16e5i)T^{2} \)
83 \( 1 + (177. + 1.00e3i)T + (-5.37e5 + 1.95e5i)T^{2} \)
89 \( 1 + (253. - 697. i)T + (-5.40e5 - 4.53e5i)T^{2} \)
97 \( 1 + (154. + 89.0i)T + (4.56e5 + 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.71337327463462350937061949262, −15.18599536056724374710809203972, −13.83918010645114408631837527736, −13.04825502521510767419722377427, −10.83038154250462791003884597266, −9.544184539905654063316614830372, −8.703405969146878623002745173903, −6.64192307556873100213825763086, −4.93089787541461505703530695706, −3.22134723036410837326800265072, 2.47756545399451007354025729448, 3.70642805122189636792455329801, 6.86005166272793124073454431149, 7.75677083672090673039406951230, 9.300538994736342793555990374004, 11.03362141750138323448240507474, 12.72381474323749630883226383002, 13.09624394283455326701190616320, 14.08971608524327094190381796194, 15.53251847472219053893515313333

Graph of the $Z$-function along the critical line