Properties

Label 2-37-37.21-c3-0-2
Degree $2$
Conductor $37$
Sign $0.546 - 0.837i$
Analytic cond. $2.18307$
Root an. cond. $1.47752$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.236 − 0.649i)2-s + (−6.38 + 2.32i)3-s + (5.76 + 4.83i)4-s + (12.1 + 2.13i)5-s + 4.69i·6-s + (−5.32 + 30.1i)7-s + (9.29 − 5.36i)8-s + (14.6 − 12.3i)9-s + (4.25 − 7.37i)10-s + (−22.3 − 38.7i)11-s + (−48.0 − 17.4i)12-s + (26.0 − 31.0i)13-s + (18.3 + 10.6i)14-s + (−82.3 + 14.5i)15-s + (9.16 + 51.9i)16-s + (43.0 + 51.2i)17-s + ⋯
L(s)  = 1  + (0.0836 − 0.229i)2-s + (−1.22 + 0.447i)3-s + (0.720 + 0.604i)4-s + (1.08 + 0.191i)5-s + 0.319i·6-s + (−0.287 + 1.63i)7-s + (0.410 − 0.237i)8-s + (0.543 − 0.456i)9-s + (0.134 − 0.233i)10-s + (−0.613 − 1.06i)11-s + (−1.15 − 0.420i)12-s + (0.556 − 0.662i)13-s + (0.350 + 0.202i)14-s + (−1.41 + 0.250i)15-s + (0.143 + 0.811i)16-s + (0.614 + 0.731i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37\)
Sign: $0.546 - 0.837i$
Analytic conductor: \(2.18307\)
Root analytic conductor: \(1.47752\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{37} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 37,\ (\ :3/2),\ 0.546 - 0.837i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.03880 + 0.562415i\)
\(L(\frac12)\) \(\approx\) \(1.03880 + 0.562415i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 + (100. + 201. i)T \)
good2 \( 1 + (-0.236 + 0.649i)T + (-6.12 - 5.14i)T^{2} \)
3 \( 1 + (6.38 - 2.32i)T + (20.6 - 17.3i)T^{2} \)
5 \( 1 + (-12.1 - 2.13i)T + (117. + 42.7i)T^{2} \)
7 \( 1 + (5.32 - 30.1i)T + (-322. - 117. i)T^{2} \)
11 \( 1 + (22.3 + 38.7i)T + (-665.5 + 1.15e3i)T^{2} \)
13 \( 1 + (-26.0 + 31.0i)T + (-381. - 2.16e3i)T^{2} \)
17 \( 1 + (-43.0 - 51.2i)T + (-853. + 4.83e3i)T^{2} \)
19 \( 1 + (29.9 + 82.2i)T + (-5.25e3 + 4.40e3i)T^{2} \)
23 \( 1 + (-40.7 - 23.5i)T + (6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + (-170. + 98.4i)T + (1.21e4 - 2.11e4i)T^{2} \)
31 \( 1 + 36.9iT - 2.97e4T^{2} \)
41 \( 1 + (167. + 140. i)T + (1.19e4 + 6.78e4i)T^{2} \)
43 \( 1 - 453. iT - 7.95e4T^{2} \)
47 \( 1 + (-223. + 386. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (-92.2 - 523. i)T + (-1.39e5 + 5.09e4i)T^{2} \)
59 \( 1 + (-60.5 + 10.6i)T + (1.92e5 - 7.02e4i)T^{2} \)
61 \( 1 + (-139. + 166. i)T + (-3.94e4 - 2.23e5i)T^{2} \)
67 \( 1 + (27.0 - 153. i)T + (-2.82e5 - 1.02e5i)T^{2} \)
71 \( 1 + (337. - 122. i)T + (2.74e5 - 2.30e5i)T^{2} \)
73 \( 1 + 853.T + 3.89e5T^{2} \)
79 \( 1 + (-304. - 53.6i)T + (4.63e5 + 1.68e5i)T^{2} \)
83 \( 1 + (90.6 - 76.0i)T + (9.92e4 - 5.63e5i)T^{2} \)
89 \( 1 + (-475. + 83.8i)T + (6.62e5 - 2.41e5i)T^{2} \)
97 \( 1 + (963. + 556. i)T + (4.56e5 + 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.09134543351525608685897529595, −15.37995223437228534104657641588, −13.34245311352746004847016311465, −12.26696153230165317226195294239, −11.19990902313124699758510270585, −10.28539301121178109576726436314, −8.548543102252133594088367514951, −6.17780110310318570978828120810, −5.59968808215914238006150752520, −2.72980199551245161225917612198, 1.34114672243812208638952942679, 5.07097740196995023283162976394, 6.39298252367233913558818235190, 7.20174477028451833546768888942, 10.03830690786600844705554728323, 10.59586311698276540565204661958, 12.03089911156449556515084374228, 13.37592233308432646749621265615, 14.34523279938016926271903695688, 16.14880217159320993798099135403

Graph of the $Z$-function along the critical line