Properties

Label 2-37-37.4-c1-0-1
Degree $2$
Conductor $37$
Sign $0.972 - 0.232i$
Analytic cond. $0.295446$
Root an. cond. $0.543549$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.502 + 0.0885i)2-s + (0.199 + 1.13i)3-s + (−1.63 − 0.595i)4-s + (−0.986 − 1.17i)5-s + 0.587i·6-s + (0.422 − 0.354i)7-s + (−1.65 − 0.954i)8-s + (1.57 − 0.572i)9-s + (−0.391 − 0.678i)10-s + (−2.20 + 3.82i)11-s + (0.347 − 1.97i)12-s + (−0.881 + 2.42i)13-s + (0.243 − 0.140i)14-s + (1.13 − 1.35i)15-s + (1.91 + 1.61i)16-s + (−1.25 − 3.43i)17-s + ⋯
L(s)  = 1  + (0.355 + 0.0626i)2-s + (0.115 + 0.654i)3-s + (−0.817 − 0.297i)4-s + (−0.441 − 0.525i)5-s + 0.239i·6-s + (0.159 − 0.134i)7-s + (−0.584 − 0.337i)8-s + (0.524 − 0.190i)9-s + (−0.123 − 0.214i)10-s + (−0.665 + 1.15i)11-s + (0.100 − 0.569i)12-s + (−0.244 + 0.671i)13-s + (0.0651 − 0.0376i)14-s + (0.293 − 0.349i)15-s + (0.479 + 0.402i)16-s + (−0.303 − 0.834i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.972 - 0.232i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.972 - 0.232i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37\)
Sign: $0.972 - 0.232i$
Analytic conductor: \(0.295446\)
Root analytic conductor: \(0.543549\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{37} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 37,\ (\ :1/2),\ 0.972 - 0.232i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.760151 + 0.0895545i\)
\(L(\frac12)\) \(\approx\) \(0.760151 + 0.0895545i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 + (4.52 + 4.06i)T \)
good2 \( 1 + (-0.502 - 0.0885i)T + (1.87 + 0.684i)T^{2} \)
3 \( 1 + (-0.199 - 1.13i)T + (-2.81 + 1.02i)T^{2} \)
5 \( 1 + (0.986 + 1.17i)T + (-0.868 + 4.92i)T^{2} \)
7 \( 1 + (-0.422 + 0.354i)T + (1.21 - 6.89i)T^{2} \)
11 \( 1 + (2.20 - 3.82i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (0.881 - 2.42i)T + (-9.95 - 8.35i)T^{2} \)
17 \( 1 + (1.25 + 3.43i)T + (-13.0 + 10.9i)T^{2} \)
19 \( 1 + (-7.27 + 1.28i)T + (17.8 - 6.49i)T^{2} \)
23 \( 1 + (3.41 - 1.97i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (5.82 + 3.36i)T + (14.5 + 25.1i)T^{2} \)
31 \( 1 + 2.56iT - 31T^{2} \)
41 \( 1 + (0.0161 + 0.00589i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 - 6.06iT - 43T^{2} \)
47 \( 1 + (2.31 + 4.01i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-9.18 - 7.70i)T + (9.20 + 52.1i)T^{2} \)
59 \( 1 + (-5.30 + 6.32i)T + (-10.2 - 58.1i)T^{2} \)
61 \( 1 + (-3.39 + 9.33i)T + (-46.7 - 39.2i)T^{2} \)
67 \( 1 + (11.6 - 9.73i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-0.229 - 1.30i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + 0.316T + 73T^{2} \)
79 \( 1 + (-2.05 - 2.44i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (7.17 - 2.61i)T + (63.5 - 53.3i)T^{2} \)
89 \( 1 + (-6.14 + 7.32i)T + (-15.4 - 87.6i)T^{2} \)
97 \( 1 + (-1.74 + 1.00i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.11597085103720905571827853694, −15.38514245132069705633720664276, −14.19468363501308151702217908796, −13.02608723580589825027751073339, −11.84495689970496015375237596124, −9.955179469288874424764751791518, −9.259524001570439782348004411582, −7.45994281634412123223063313067, −5.09304116028829617481927488170, −4.14979624831693860514966124349, 3.41365332415871423940694010008, 5.45337965994512139835849049778, 7.46306529988366611033552385764, 8.489865306907854070038509278956, 10.32962189299348175251013855331, 11.84530230661970265142518809214, 13.01970467089825937009434617386, 13.79056134526119714614896657562, 15.02785469385061043786778501383, 16.34602987761318620412615324254

Graph of the $Z$-function along the critical line