Properties

Label 2-37-1.1-c9-0-6
Degree $2$
Conductor $37$
Sign $-1$
Analytic cond. $19.0563$
Root an. cond. $4.36535$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27.8·2-s − 234.·3-s + 263.·4-s − 396.·5-s + 6.52e3·6-s − 1.07e4·7-s + 6.91e3·8-s + 3.51e4·9-s + 1.10e4·10-s + 8.21e4·11-s − 6.17e4·12-s + 6.64e4·13-s + 3.00e5·14-s + 9.28e4·15-s − 3.27e5·16-s − 3.68e5·17-s − 9.79e5·18-s + 2.24e5·19-s − 1.04e5·20-s + 2.52e6·21-s − 2.28e6·22-s + 2.82e5·23-s − 1.61e6·24-s − 1.79e6·25-s − 1.85e6·26-s − 3.62e6·27-s − 2.84e6·28-s + ⋯
L(s)  = 1  − 1.23·2-s − 1.66·3-s + 0.515·4-s − 0.283·5-s + 2.05·6-s − 1.69·7-s + 0.596·8-s + 1.78·9-s + 0.349·10-s + 1.69·11-s − 0.859·12-s + 0.645·13-s + 2.08·14-s + 0.473·15-s − 1.24·16-s − 1.06·17-s − 2.19·18-s + 0.394·19-s − 0.146·20-s + 2.83·21-s − 2.08·22-s + 0.210·23-s − 0.996·24-s − 0.919·25-s − 0.794·26-s − 1.31·27-s − 0.874·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37\)
Sign: $-1$
Analytic conductor: \(19.0563\)
Root analytic conductor: \(4.36535\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 37,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 + 1.87e6T \)
good2 \( 1 + 27.8T + 512T^{2} \)
3 \( 1 + 234.T + 1.96e4T^{2} \)
5 \( 1 + 396.T + 1.95e6T^{2} \)
7 \( 1 + 1.07e4T + 4.03e7T^{2} \)
11 \( 1 - 8.21e4T + 2.35e9T^{2} \)
13 \( 1 - 6.64e4T + 1.06e10T^{2} \)
17 \( 1 + 3.68e5T + 1.18e11T^{2} \)
19 \( 1 - 2.24e5T + 3.22e11T^{2} \)
23 \( 1 - 2.82e5T + 1.80e12T^{2} \)
29 \( 1 - 4.60e6T + 1.45e13T^{2} \)
31 \( 1 + 3.89e5T + 2.64e13T^{2} \)
41 \( 1 - 9.64e6T + 3.27e14T^{2} \)
43 \( 1 - 2.41e7T + 5.02e14T^{2} \)
47 \( 1 + 5.05e7T + 1.11e15T^{2} \)
53 \( 1 - 9.67e7T + 3.29e15T^{2} \)
59 \( 1 + 1.34e8T + 8.66e15T^{2} \)
61 \( 1 - 1.24e8T + 1.16e16T^{2} \)
67 \( 1 + 6.87e7T + 2.72e16T^{2} \)
71 \( 1 + 3.78e8T + 4.58e16T^{2} \)
73 \( 1 - 2.94e8T + 5.88e16T^{2} \)
79 \( 1 + 1.03e8T + 1.19e17T^{2} \)
83 \( 1 - 3.92e7T + 1.86e17T^{2} \)
89 \( 1 - 7.11e7T + 3.50e17T^{2} \)
97 \( 1 + 5.91e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43965886982392162272344210006, −12.12588178582884494962493448114, −11.13401123083749319977940200480, −9.979488497042427331337781992257, −9.026963177568561978559833811348, −6.92319803463698950225449323773, −6.21817008981739525307714419798, −4.12376238870659213449523118922, −1.04211091021038006701599095220, 0, 1.04211091021038006701599095220, 4.12376238870659213449523118922, 6.21817008981739525307714419798, 6.92319803463698950225449323773, 9.026963177568561978559833811348, 9.979488497042427331337781992257, 11.13401123083749319977940200480, 12.12588178582884494962493448114, 13.43965886982392162272344210006

Graph of the $Z$-function along the critical line