Properties

Label 8-3675e4-1.1-c1e4-0-5
Degree $8$
Conductor $1.824\times 10^{14}$
Sign $1$
Analytic cond. $741545.$
Root an. cond. $5.41710$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 4·4-s + 10·9-s + 16·12-s + 16·13-s + 7·16-s + 16·17-s − 20·27-s + 8·29-s − 40·36-s − 64·39-s + 24·47-s − 28·48-s − 64·51-s − 64·52-s − 8·64-s − 64·68-s + 16·71-s + 16·73-s − 32·79-s + 35·81-s + 24·83-s − 32·87-s + 48·97-s + 80·108-s + 8·109-s − 32·116-s + ⋯
L(s)  = 1  − 2.30·3-s − 2·4-s + 10/3·9-s + 4.61·12-s + 4.43·13-s + 7/4·16-s + 3.88·17-s − 3.84·27-s + 1.48·29-s − 6.66·36-s − 10.2·39-s + 3.50·47-s − 4.04·48-s − 8.96·51-s − 8.87·52-s − 64-s − 7.76·68-s + 1.89·71-s + 1.87·73-s − 3.60·79-s + 35/9·81-s + 2.63·83-s − 3.43·87-s + 4.87·97-s + 7.69·108-s + 0.766·109-s − 2.97·116-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(741545.\)
Root analytic conductor: \(5.41710\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.919565099\)
\(L(\frac12)\) \(\approx\) \(3.919565099\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{4} \)
5 \( 1 \)
7 \( 1 \)
good2$D_4\times C_2$ \( 1 + p^{2} T^{2} + 9 T^{4} + p^{4} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
19$D_4\times C_2$ \( 1 + 48 T^{2} + 1106 T^{4} + 48 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 + 40 T^{2} + 1266 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 4 T + 14 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 36 T^{2} - 10 T^{4} + 36 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{4} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + 52 T^{2} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 124 T^{2} + 7734 T^{4} + 124 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 160 T^{2} + 12114 T^{4} + 160 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 60 T^{2} + 6806 T^{4} + 60 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 8 T + 50 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 - 8 T + 114 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 16 T + 210 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
89$D_4\times C_2$ \( 1 + 100 T^{2} + 6054 T^{4} + 100 p^{2} T^{6} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 - 24 T + 290 T^{2} - 24 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.02916235373375602408616444114, −5.71372743536268795241716935557, −5.57136042257958697844227705808, −5.53641517608998441110701142752, −5.51998244030968874708798296047, −4.99237937445917782148512611504, −4.73493628508467850837772194489, −4.71463410664560802802468520704, −4.70414068967458003378249543241, −4.07572911158261936234386986123, −3.93611030162620368147921238470, −3.88506587307919313930732029910, −3.82553557400490251686701075571, −3.45882197710195971320529396808, −3.25377328401529988209346447505, −3.20201120635432632656029406049, −2.75034245525125024705289118519, −2.36238977081349655492779706471, −1.82008814499021281810217543221, −1.51266737127042097706832080440, −1.47377976052566319837718061936, −0.854637472226835135908143334879, −0.837759581689706862809287524556, −0.71414800560599163514864004153, −0.66289297090853677245546156900, 0.66289297090853677245546156900, 0.71414800560599163514864004153, 0.837759581689706862809287524556, 0.854637472226835135908143334879, 1.47377976052566319837718061936, 1.51266737127042097706832080440, 1.82008814499021281810217543221, 2.36238977081349655492779706471, 2.75034245525125024705289118519, 3.20201120635432632656029406049, 3.25377328401529988209346447505, 3.45882197710195971320529396808, 3.82553557400490251686701075571, 3.88506587307919313930732029910, 3.93611030162620368147921238470, 4.07572911158261936234386986123, 4.70414068967458003378249543241, 4.71463410664560802802468520704, 4.73493628508467850837772194489, 4.99237937445917782148512611504, 5.51998244030968874708798296047, 5.53641517608998441110701142752, 5.57136042257958697844227705808, 5.71372743536268795241716935557, 6.02916235373375602408616444114

Graph of the $Z$-function along the critical line